

PROTON STRUCTURE IN THE LHC ERA: Impact of CMS Measurements on Parton Distribution Functions

Katerina Lipka on behalf of the CMS Experiment

ICPPA, Moscow 2017

PARTICLE PRODUCTION IN PP COLLISIONS

Partons: quarks & gluons
Q²: typical energy scale in the process
x : partonic fraction of the proton momentum

Rate = (structure of 2 protons) $\otimes \sigma_{ij}$

provided by theory determined experimentally

at the very edge of theory and experiment, correlated with fundamental QCD parameters

Improvement of PDFs precision demands theory & experiment collaboration and implies a variety of measurements and theory calculations

PDF DETERMINATION IN A QCD ANALYSIS

Parton Distribution Functions $f_i(Q^2, x)$ provided determined by theory experimentally

Example of PDF determination:

• parameterize *x*-shape at a scale Q_0^2 :

 $f(x) = Ax^{B} (1-x)^{C} (1+Dx+Ex^{2})$

- evolve these PDFs to $Q^2 > Q^2_0$ (e.g. using DGLAP evolution equations)
- construct expected cross sections
- χ^2 fit to the experimental data

2

TOOL FOR PDF DETERMINATION

Unique tool to test impact of the measurements on e.g. PDFs during data analysis

CMS results on PDFs shown in this talk are obtained using XFitter

PDF CONSTRAINTS FROM LHC

Parton Distribution Functions

 $f_i(Q^2, x)$ provided determined by theory experimentally

Impact of the LHC measurements:

 DY: light quarks, flavor separation gluon

 V+HQ: s-quark, intrinsic charm

jets: gluon, α_S
 medium-high x

• top-pairs: gluon high x

• single top: u, d, b

PROBING PDFs WITH W-BOSON PRODUCTION

production of W⁺ or W⁻ probes different quark flavors

Lepton-charge asymmetry constrains valence

$$A_W = \frac{W^+ - W^-}{W^+ + W^-} \approx \frac{u_v - d_v}{u_v + d_v + 2u_{sea}}$$

CMS measurement used in a QCD analysis at NNLO

Significant reduction of uncertainty in the valence

Eur.Phys.J. C76 (2016) no.8, 469

FLAVOUR DECOMPOSITION: W+CHARM

In pp collisions, production process of W+c probes strange quark directly at LO

Measure W+c-hadron production

Strangeness suppression factor

First direct determination of s-quark distribution at a hadron collider

 $\kappa_s = 0.52^{+0.12}_{-0.10} (exp.)^{+0.05}_{-0.06} (mod.)^{+0.13}_{-0.10} (par.)$

in good agreement with neutrino experiments [Nucl.Phys. B876 (2013) 339, κ_s =0.59 ± 0.019]

Jet production in pp collisions directly sensitive to PDFs and α_S

CMS 8 TeV, \mathcal{L} = 19.7 fb⁻¹ inclusive jet production,

2-differential cross sections vs jet p_T and y used in a QCD analysis at NLO:

Significant impact on the gluon distribution: reduced uncertainty at high x

Strong Coupling, determined simultaneously with PDFs: $\alpha_s(M_Z) = 0.1185^{+0.0019}_{-0.0026}(PDF)^{+0.0022}_{-0.0018}(scale)$

consistent with world average
(dominant uncertainty from variations of the scales)

Jet production in pp collisions directly sensitive to PDFs and α_S

8

CMS 8 TeV, $\mathcal{L} = 19.7 \text{ fb}^{-1}$ dijet production: 3-differential cross sections vs of jet <p_7>, rapidity separation and boost: probe x₁ and x₂ using different event topologies

Jet production in pp collisions directly sensitive to PDFs and α_S

CMS 8 TeV, $\mathcal{L} = 19.7 \text{ fb}^{-1}$ dijet production: 3-differential cross sections vs of jet <p_7>, rapidity separation and boost: probe x₁ and x₂ using different event topologies

+

Jet production in pp collisions directly sensitive to PDFs and α_S

CMS 8 TeV, \mathcal{L} = 19.7 fb⁻¹ dijet production: 3-differential cross sections vs of jet <p_T>, rapidity separation and boost: probe x₁ and x₂ using different event topologies By using dijet cross section in the QCD analysis in addition to HERA data...

Change in the gluon shape and reduced uncertainty at high x similar as observed with inclusive jet data

Strong coupling determined simultaneously with PDFs:

 $\alpha_s(M_Z) = 0.1199^{+0.0015}_{-0.0016}(PDF)^{+0.0026}_{-0.0016}(scale)$

CMS 8 TeV, \perp = 19.7 fb⁻¹ multi-jet production CMS-PAS-SMP-16-008

Ratio of 3/2 inclusive jet cross sections

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma_{pp \to n \ jets + X; n \ge 3}}{\sigma_{pp \to n \ jets + X; n \ge 2}}$$

Σ Ξ + Ξ +

 $\sim \alpha s$

Σ +......

Theory: NLOJet++ via FastNLO, corrected for MPI, NP and EWK (2-jet) scales $\mu_r = \mu_f = H_{T,2}/2 = \frac{1}{2}$ ($p_{T1} + p_{T2}$), varied independently by a factor of 2 NLO PDF sets studied: MSTW08, CT10, ABM11(N_F=5), NNPDF2.3 and 3.0 MMHT14, CT14

Advantage of R₃₂: partial or full cancellation or reduction of experimental uncertainties, theory uncertainties due to NP effects, PDFs, scale choice, EWK corrections

 α_s determined by minimizing χ^2 between the measurement and the theory

MMHT14: χ^2/n_{dof} =24/28 $\alpha_S(M_Z) = 0.1142 \pm 0.0010(exp) \pm 0.0013(PDF)$ $\pm 0.0014(NP)^{+0.0049}_{-0.0006}(scale)$

Advantage of R₃₂: partial or full cancellation or reduction of experimental uncertainties, theory uncertainties due to NP effects, PDFs, scale choice, EWK corrections

α_s determined by minimizing χ^2 between the measurement and the theory

$\alpha_{S}(M_{Z})$ value for each $H_{T,2}/2$ range $\rightarrow \alpha_{S}(Q)$

MMHT14: $\chi^2/n_{dof} = 24/28$ $\alpha_S(M_Z) = 0.1142 \pm 0.0010(exp) \pm 0.0013(PDF)$ $\pm 0.0014(NP)^{+0.0049}_{-0.0006}(scale)$

Evolution performed for $N_f = 5$ at 2-loops

In pp collisions top-quark pairs are produced via gg fusion probing gluon at high x

CMS 8 TeV, \bot = 19.7 fb⁻¹ :

2d-differential tt cross sections, EPJC 77 (2017) 459

1-d and 2-d differential cross sections for different observables studied

Results compared to those obtained by using inclusive jets @ 8 TeV

 $\mu^2 = 30000 \text{ GeV}^2 \text{ NLO}$

HERA + CMS W[±] 8 TeV

HERA + CMS jets 8 TeV

HERA + CMS W[±] 8 TeV +

[y(tt), M(tt)] 8 TeV

10⁻¹

arXiv:1703.01630

strongest constraints achieved by using 2d distributions in Mtt and ytt

Recommend to use both data sets for further improvement of g(x) at high x

10⁻²

Х

In pp collisions top-quark pairs are produced via gg fusion probing gluon at high x

Preliminary

Effect of 0.1% LHC beam energy uncertainty: 0.22 pb (not included in the figure

NNPDF3.0

5

12

MMHT14

ABM12*

√s [TeV]

 \sqrt{s} [TeV]

14

100

50

NNPDF3.0, $m_{top} = 172.5 \text{ GeV}$, $\alpha_s(M_2) = 0.118 \pm 0.001 [*\alpha_s(M_2)=0.113]$

10

0²

10

2

CMS 5.02 TeV, $\mathcal{L} = 27.4 \text{ pb}^{-1}$ CMS-PAS-TOP-16-023

QCD analysis at NNLO

new kinematic range probed

CMS eµ 7 TeV (L = 5 fb⁻¹) CMS I+j 7 TeV (L = 5 fb⁻¹)

4

CMS eu 8 TeV (L = 19.7 fb⁻¹) CMS I+j 8 TeV (L = 19.7 fb⁻¹)

CMS eµ 13 TeV (L = 2.2 fb⁻¹, 25 ns) CMS I+j 13 TeV (L = 2.2 fb^{-1})

CMS $e\mu + \mu\mu + I + j$ 5.02 TeV (L = 27.4 pb⁻¹)

NNLO+NNLL (pp)

(qq) LJNN+OJNN

6

Czakon, Fiedler, Mitov, PRL 110 (2013) 252004

8

Inclusive tt cross section [pb] Tevatron combined 1.96 TeV ($L \le 8.8 \text{ fb}^{-1}$) CMS

t and t @ CMS: PROBING THE LIGHT QUARKS

t-channel single top-quark production in pp collisions @ LHC

Probe the struck **light quark** through **charge** of top-quark measurement of $\sigma_t / \sigma_{\bar{t}}$ ratio R_t at **CMS 13 TeV (2.3 fb⁻¹) Phys. Lett. B 72 (2017) 752**

Dominant systematic uncertainty: - Jet Energy Scale and Calibration - Signal Modeling

Theory via POWHEG 4FS Uncertainties account for variation of the scales and m_t

SUMMARY

LHC Run I CMS data used for improvement of PDF accuracy

• Inclusive and associated with Charm, W production constraints valence and strange sea of the proton

jet data: gluon at medium & high x, strong coupling
 → getting even more interesting with available NNLO calculation

• Top-pair production has high potential to improve accuracy of g(x) at high x \rightarrow remains important to constrain strong coupling & top quark mass

LHC Run II CMS data is forthcoming

Run I has shown high potential of the LHC to improve the understanding of the proton structure, more data are still to come to be used in precision QCD analyses

BACK UP

PARTICLE PRODUCTION IN PP COLLISIONS

proton structure hard interaction

 $x \mathbf{P_1}$

 $x \mathbf{P}_2$

 $\hat{\sigma}_{ij}(\alpha_S)$

 $f_i(x_1)$

 $f_i(x_2)$

Factorization:

proton structure \otimes sub-process ME

$$\sigma(s) = \sum_{i,j} \int_{\tau_0}^{1} \left(\frac{d\tau}{\tau} \cdot \frac{dL_{ij}(\mu_F^2)}{d\tau} \right) \cdot \hat{s} \cdot \hat{\sigma}_{ij}$$

Ingredients for SM predictions for pp@LHC:

partonic cross section calculable in pQCD
parton luminosity:

 $\tau \cdot \frac{dL_{ij}}{d\tau} \propto \int_0^1 dx_1 dx_2 (x_1 f_i(x_1, \mu_F^2) \cdot x_2 f_j(x_2, \mu_F^2)) + (1 \leftrightarrow 2)\delta(\tau - x_1 x_2)$

Parton Distribution Functions (PDFs)

universal functions of partonic fraction *x* of proton momentum and energy scale *Q* of the process

Precision of PDFs essential for interpretation of the LHC measurements Precise LHC data are used to improve PDF constraints

CMS QCD ANALYSIS FRAMEWORK

QCD analyses at NLO / NNLO,

parton evolution in Q^2 via DGLAP as implemented in QCDNUM

Data in the QCD analysis:

HERA I+II combined inclusive DIS data, Charged and Neutral Current [JHEP 1001:109 (2010)]
 Different CMS data sets (details in the next slides)

Experimental uncertainties: originate from uncertainties of the data, criterion $\Delta\chi^2$ =1 is applied

Model input:

- Theory calculations at NLO/NNLO appropriate for each data set
- Starting scale of PDF evolution $Q^2_0 = 1.9 \text{ GeV}^2$
- Heavy quark treatment: general mass variable flavor number scheme by Thorne-Roberts (TR)
- Heavy quark masses: m_c = 1.4 GeV, m_b = 4.75 GeV.

Model uncertainties: originate from variations of model input parameters:

1.35 GeV <
$$m_c$$
 < 1.65 GeV, 4.3 GeV < m_b < 5 GeV, 3.5 GeV² < Q^2_{min} < 5 GeV²

fraction of strange quarks in the sea f_s =0.31±0.08

CMS QCD ANALYSIS: PARAMETRISATION

Basic parametrization at the starting scale $Q^{2}_{0}=1.9$ GeV² (13+ free parameters):

$$\begin{aligned} xg(x) &= A_g x^{B_g} \cdot (1-x)^{C_g} - A'_g x^{B'_g} \cdot (1-x)^{C'_g}, & x \overline{U} &= x \overline{u} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} \cdot (1-x)^{C_{u_v}} \cdot (1+E_{u_v} x^2), & x \overline{D} &= x \overline{d} + x \overline{s} \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} \cdot (1-x)^{C_{d_v}}, & B_{\overline{U}} &= B_{\overline{D}} \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} \cdot (1-x)^{C_{\overline{U}}}, & A_{\overline{U}} &= A_{\overline{D}}(1-f_s) \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} \cdot (1-x)^{C_{\overline{D}}}. & f_s &= \overline{s}/(\overline{d} + \overline{s}) \equiv 0.31 \pm 0.08 \end{aligned}$$

Normalization parameters A are determined by QCD sum rules B: define low-x behaviour, C: high-x shape

Parametrization uncertainties:

originate from variations on assumed parametrization, in which additional parameters are added one by-one in the functional form of the parametrization; additional variation of 1. $5 < Q^2_0 < 2.5 \text{ GeV}^2$

Largest difference of resulting PDFs to the central result (envelope) is assigned as uncertainty

CMS 8 TeV, \mathcal{L} = 19.7 fb⁻¹ dijet production: CMS-PAS-SMP-16-011

3-differential cross sections vs of jet average p_T , rapidity separation and boost

Probing x₁ and x₂ using different event topologies

CMS 8 TeV, \mathcal{L} = 19.7 fb⁻¹ dijet production: CMS-PAS-SMP-16-011

3-differential cross sections vs of jet average p_T, rapidity separation and boost

Probing x₁ and x₂ using different event topologies

QCD analysis: XFitter 1.2. 2, baseline data HERA inclusive DIS [EPJ C 75 (2015) 580] Theory via NLOJet++ via fastNLO, scale $\mu_r = \mu_f = p_{T,max} \cdot e^{0.3y^*}$

-

2
Ð
()
U
6
2
a

$xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g},$	$x\overline{U}(x) = x\overline{u}(x)$, and $x\overline{D}(x) = x\overline{d}(x) + x\overline{s}(x)$
$xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x + E_{u_v} x^2),$	$B_{\overline{U}} = B_{\overline{D}}$ and $A_{\overline{U}} = A_{\overline{D}}(1-f_s)$
$xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} (1+D_{d_v} x),$	$Bd_v \neq Bu_v$
$x\overline{U}(x) = A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}(1+D_{\overline{U}}x),$	
$x\overline{D}(x) = A_{\overline{D}}x^{B_{\overline{D}}}(1-x)^{C_{\overline{D}}}$,	⇒ 16-parameter fit

Data are consistent very good fit quality for the CMS jet data

		IILINA uata		IIERA & CIVIS uata	
data set	n _{data}	$\chi^2_{ m P}$	$\chi_{\rm p}^2/n_{\rm data}$	$\chi^2_{ m p}$	$\chi_{\rm p}^2/n_{\rm data}$
NC HERA-I+II $e^+ p E_p = 920 \text{ GeV}$	332	382.44	1.15	406.45	1.22
NC HERA-I+II $e^+ p E_p = 820 \text{ GeV}$	63	60.62	0.96	61.01	0.97
NC HERA-I+II $e^+ p E_p = 575 \text{ GeV}$	234	196.40	0.84	197.56	0.84
NC HERA-I+II $e^+ p E_p = 460 \text{ GeV}$	187	204.42	1.09	205.50	1.10
NC HERA-I+II e^-p	159	217.27	1.37	219.17	1.38
CC HERA-I+II e^+p	39	43.26	1.11	42.29	1.08
CC HERA-I+II e^-p	42	49.11	1.17	55.35	1.32
CMS Triple-Differential Dijets	122		—	111.13	0.91
data set(s)	n _{dof}	χ^2	$\chi^2/n_{\rm dof}$	χ^2	$\chi^2/n_{ m dof}$
HERA data	1040	1211.00	1.16	_	_
HERA & CMS data	1162		_	1372.52	1.18

HERA data

HERA & CMS data

B6

QCD analysis: XFitter 1.2.2,

baseline data: HERA inclusive DIS [EPJ C75 (2015) 580], CMS W[±] [EPJ C76 (2016) 469] Theory for tt MCFM via ApplGrid, scales $\mu_{r,f} = \sqrt{m_t^2 + [p_T(t)^2 + p_T(\bar{t})^2]/2}$

$$\begin{split} xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}}(1+E_{g}x^{2}+F_{g}x^{3}) - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ xu_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+D_{u_{v}}x+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ x\overline{U}(x) &= A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}, \\ x\overline{U}(x) &= A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}(1+D_{\overline{U}}x+F_{\overline{U}}x^{3}), \\ x\overline{D}(x) &= A_{\overline{D}}x^{B_{\overline{D}}}(1-x)^{C_{\overline{D}}}, \end{split}$$

$$\begin{aligned} &\Rightarrow 18\text{-parameter fit} \end{split}$$

Data are consistent very good fit quality for the CMS data

Data sots	χ^2/dof				
Data Sets	Nominal fit	$+[p_{\mathrm{T}}(\mathbf{t}), y(\mathbf{t})]$	$+[y(t), M(t\overline{t})]$	$+[y(t\bar{t}), M(t\bar{t})]$	
CMS double-differential tt		10/15	7.4/15	7.6/15	
HERA CC e^-p , $E_p = 920 \text{ GeV}$	57/42	56/42	56/42	57/42	
HERA CC e^+p , $E_p = 920 \text{GeV}$	44/39	44/39	44/39	43/39	
HERA NC $e^{-}p$, $\vec{E_p} = 920 \text{ GeV}$	219/159	219/159	219/159	218/159	
HERA NC e^+p , $E_p = 920 \text{ GeV}$	440/377	437/377	439/377	441/377	
HERA NC e^+p , $E_p = 820 \text{GeV}$	69/70	68/70	68/70	69/70	
HERA NC e^+p , $E_p = 575$ GeV	221/254	220/254	221/254	221/254	
HERA NC e^+p , $E_p = 460 \text{GeV}$	219/204	219/204	219/204	219/204	
$CMS W^{\pm}$ asymmetry	4.7/11	4.6/11	4.8/11	4.9/11	
Correlated χ^2	82	87	91	89	
Log-penalty χ^2	-2.5	+2.6	-2.2	-3.3	
Total χ^2 /dof	1352/1138	1368/1153	1368/1153	1366/1153	