

MEASUREMENTS OF THE HIGGS H(125) BOSON AT CMS

Valeria Botta (DESY) on behalf of the CMS Collaboration

International Conference on New Frontiers in Physics - Crete, 17-26 August 2017

Discovery of the Hig

INTRODUCTION

- Discovery of the Higgs H(125) boson five years ago by ATLAS and CMS
- Mass of 125 GeV makes it possible to experimentally probe many decay modes at the LHC

Large number of analyses in Higgs physics

- to characterise the discovered particle
- to search for additional Higgs bosons

IN THIS TALK...

 Overview of the most recent results from CMS on the "standard-model-like" Higgs boson H(125)

- Made a selection of the most recent results @ 13 TeV
- There are many more: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>

- In other dedicated talks:
 - Higgs properties (mass, spin, width...)
 - Searches for double Higgs, rare, exotic and LFV decays, low mass Higgs
 - Prospects at HL-LHC

OUTLINE

■ Overview of the most recent results from CMS on the Higgs boson H(125). All results on pp-collisions data at √s =13 TeV

Analysis	Luminosity	Reference	Status
H(ZZ)	35.9/fb	<u>arXiv:1706.09936</u>	Submitted to JHEP
Η(γγ)	35.9/fb	<u>CMS-PAS-HIG-17-015</u> <u>CMS-PAS-HIG-16-040</u>	Preliminary
H(ττ)	35.9/fb	<u>arXiv:1708.00373</u>	Submitted to PLB
VH(bb)	35.9/fb	<u>CMS-PAS-HIG-16-044</u>	Preliminary
H(bb) boost.	35.9/fb	<u>CMS-PAS-HIG-17-010</u>	Preliminary
ttH, leptons	35.9/fb	<u>CMS-PAS-HIG-17-004</u>	Preliminary
ttH, H($ au$ t)	35.9/fb	<u>CMS-PAS-HIG-17-003</u>	Preliminary (backup)
tHq, leptons	35.9/fb	<u>CMS-PAS-HIG-17-005</u>	Preliminary

- Four-lepton final states (4μ, 4e, 2μ2e), allowing full and precise reconstruction of the event kinematics
- Analysis based on kinematic discriminants using matrix element techniques
- New dedicated categories to target VBF, VH and ttH production, still limited in stat.
- Irreducible background is ZZ production (from simulation), Z+jets and ttbar from data

Valeria Botta (DESY)

H(ZZ)

Measurements of the Higgs H(125) Boson at CMS

Results in good agreement with the predictions

- Signal extracted from 2D likelihood fit L = L($m_{4\ell}$)L(D^{kin} bkg | $m_{4\ell}$)
- **Differential cross** Signal strength **Fiducial cross section** section (not using D^{kin} bkg, no $\mu = 1.05 \pm 0.18$ categories for prod. mode) CMS 35.9 fb⁻¹ (13 TeV) CMS 35.9 fb⁻¹ (13 TeV) 5.1 fb⁻¹ (7 TeV), 19.7 fb⁻¹ (8 TeV), 35.9 fb⁻¹ (13 TeV) σ_{fid} (fb) dơ_{fid} /dp_T(H) (fb/GeV) $\mu = 1.17^{+0.23}$ 6 Data (stat. 🕀 svs. unc. untagged CMS m_H = 125.09 GeV Data (stat.

 sys. unc.) VBF-1jet $\mu = 0.97^{+0.41}$ 5 $\sigma(p_T(H) > 200 \text{ GeV})$ tagged $\mu_{\text{comb.}} = 1.05^{+0.19}_{-0.17}$ -0.32 Systematic uncertainty 10-I HC HXSWG YB4 m =125 09 GeV) Standard model VBF-2jet $\mu = 0.63^{+0.51}$ 4 tagged -0.34 LHC HXSWG YR4, m_µ=125.09 GeV 10⁻² $\mu = 0.76^{+0.78}$ VH-hadronic 2.90 -0.44^{+0.48} -0.22^{+0.27} fb 3 tagged -0.48 10⁻³ 2.76 ± 0.14 fb (SM) VH-leptonic $\mu = 0.00^{+1.92}$ 2 tagged -0.00 **Ratio to NNLOPS** VH-E^{miss}_T $\mu = 1.25^{\scriptscriptstyle +8.75}$ tagged -1.25 $pp \rightarrow (H \rightarrow 4I) + X$ tt H tagged $\mu = 0.00^{+0.86}$ _0 00 0 50 200 100 150 2 10 0 0 4 6 8 6 11 12 13 14 8 10 $p_{\tau}(H)$ (GeV) √s (TeV) μ also N(jets) and p_T(jet)

Valeria Botta (DESY)

Measurements of the Higgs H(125) Boson at CMS

ICNFP 19.08.2017

Low branching ratio but very clean and high resolution

- Three event categories based on estimated mass resolution
- Fiducial cross sections, total and differential
 - $|\eta| < 2.5$, $p_T/m_{\gamma\gamma} < 1/3(1/4)$, signal acceptance = 0.60
- Results in good agreement with the predictions
 - Limited by statistics

 $H(\gamma\gamma)$

Most precise measurement

CMS-PAS-HIG-17-015

Η(ττ)

Most promising channel to probe direct Higgs Yukawa coupling to fermions

- Most likely final states for $\tau \tau$ pairs: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$.
 - Tau ID eff. ~ 60% for 1% jet $\rightarrow \tau_h$ fakes (CMS-PAS-TAU-16-002)
- Targeting VBF and ggH production
- ML fit to 2D distributions in three categories (Ojet, VBF, Boosted)
- Irreducible background is Z(ττ), from MC with corrections
- Several control regions included in the fit to constraint bkg. normalisation from data (ttbar, QCD, W+jets)

ICNFP 19.08.2017

Η(ττ)

- Observed excess of events with significance 4.9 (4.7 exp.) σ
- Signal strength μ= 1.09 ± 0.27
- Uncertainty dominated by statistics
- Experimental uncertainties dominated by hadronic tau reconstruction

- **Observed signal is compatible with SM H(125)**
- Combined with CMS Run1 analysis,
 5.9 (exp. 5.9) σ significance

First observation of $H(\tau \tau)$ from a single experiment

VH(bb)

CMS-PAS-HIG-16-044

- H → bb has BR ~ 58% but overwhelming multi-jet background
 - Can be suppressed in VH production: $Z(\ell \ell)$, $Z(\nu \nu)$, $W(\ell \nu)$, + H(bb), with $\ell = e, \mu$
- A BDT is used to separate signal and backgrounds and perform ML fit

Main bkg. is V+b-jets, form MC with corrections, many control regions in the fit

Measurements of the Higgs H(125) Boson at CMS

ICNFP 19.08.2017

Results for VZ(bb) validating the analysis strategy

0.5^L

-3.5

-3

-2.5

-2

-1.5

-0.5

log (S/B)

-1

Channel	Expected signal	Observed signal	Post-fit expected	Observed
	strength	strength	significance	significance
0-lepton	1.00 ± 0.33	0.57 ± 0.32	3.1	2.0
1-lepton	1.0 ± 0.4	1.7 ± 0.5	2.6	3.7
2-lepton	1.00 ± 0.31	1.33 ± 0.34	3.2	4.5
Combined	1.00 ± 0.22	1.02 ± 0.22	4.9	5.0

Observed excess of events compatible with the H(125)

$m_{\rm H} = 125 {\rm GeV}$	Significance	Significance	Signal strength
	expected	observed	observed
Run 1	2.5	2.1	$0.89^{+0.44}_{-0.42}$
Run 2	2.8	3.3	$1.19_{-0.38}^{+0.40}$
combined	3.8	3.8	$1.06^{+0.31}_{-0.29}$

CMS-PAS-HIG-16-044

BOOSTED H(bb)

- First LHC search for boosted gg → H → bb
 Uses nevel techniques for boosted object
- Uses novel techniques for boosted object identification

- In high p_T regime (Higgs $p_T > 450$ GeV), with a ISR jet (for triggering)
 - Single "fat" jet with 2-prong structure and double b-tagged
 - 2-prong discriminator eff ~ 58% and mistag ~ 26%
 - double b-tagging eff. ~ 33% for signal and 1% for QCD
- OCD estimation fully data-driven from events failing the double b-tag requirement

CMS-PAS-HIG-17-010

BOOSTED H(bb)

- **Result for H(bb)** : 1.5σ (0.7 σ) observed (expected) significance
- Measured cross section for ggH(bb), $p_T(H) > 450$ GeV is $\sigma = 74 \pm 50$ fb.

	Н	Ζ
Observed best fit	$\mu H = 2.3^{+1.8}_{-1.6}$	$\mu Z = 0.78^{+0.23}_{-0.19}$
Expected significance	$0.7\sigma (\mu H = 1)$	$5.8\sigma \ (\mu_Z = 1)$
Observed significance	1.5σ	5.1σ

Use Z(bb) as standard candle: First observation of Z(bb) in merged-jet topology 13

Valeria Botta (DESY)

Measurements of the Higgs H(125) Boson at CMS

Analyses targeting ttH production mode

- ttH production provides direct probe of the top
 Yukawa coupling
 - BSM models predict enhanced ttH production
- It is a low rate process, even at 13 TeV (σ_{SM} =507 fb)
 - Large backgrounds from ttV+jets and tt+jets
 - "Rare" backgrounds (WW same sign, tri-boson, lepton charge-flip, jet faking leptons)
- Make large use of MVA techniques
- The most promising channels are "multi-lepton" final states, with H(WW), H(ZZ) and H(ττ)
- Also, dedicated categories in H(γγ) and H(ZZ)

ttH, leptons

- Final states with e,μ (2,3,4 ℓ)
- Categorisation based on N(leptons), flavour and N(b-jets)
- Signal extracted by ML fit of 2 BDT discriminants (against tt and tt+V)
- Dedicated BDT against non-prompt leptons
- tt+V and VV backgrounds from simulation, O(10%) uncertainty
- Data-driven estimation of charge-flip and non-prompt leptons, O(30%) uncertainty

CMS-PAS-HIG-17-004

CMS-PAS-HIG-17-004

- Observed excess of events compatible with ttH signal
- Significance 3.3 (exp. 2.4) σ
- Signal strength $\mu = 1.5 \pm 0.5$
- Cross check

ttH, leptons

 Fit introducing cross section modifiers for tt+Z and tt+W

ttH results overview

17

tHq, leptons

- Single top + Higgs production, sensitive to the sign of the top Yukawa coupling
- Targeting H(WW) with 2 or 3 W bosons decaying leptonically
- Also includes contributions from $H(\tau \tau)$ and H(ZZ)
- Upper limits on tH+ttH cross section x BR as a function of κ_t/κ_v
- For κ_t=1 (SM-like)
 - σ x BR < 0.56 (0.24 exp) fb
 - 2.7 (1.5 exp) σ for tH+ttH signal, $\mu = 1.8 \pm 0.7$
- For κ_t=-1
 - $\sigma x BR < 0.64 (0.32 exp) fb$
 - 1.7 (2.5 exp) σ for tH+ttH signal, μ = 0.7 ± 0.4
- κ_t<-1.25 or κ_t>+1.60 excluded at 95% C.L.

Measurements of the Higgs H(125) Boson at CMS

SUMMARY

- The latest results of the H(125) measurements performed at CMS have been presented
 on the full 2016 dataset @ 13 TeV
- In the H \rightarrow ZZ and H $\rightarrow \gamma\gamma$ channels, precision measurements are being performed
- Important milestones reached regarding the 3rd generation Yukawa couplings
 - Observation of $H(\tau\tau)$ decay mode by a single experiment
 - Evidence of H(bb) decay mode in VH production
 - First attempt searching for inclusive boosted gg → H → bb
- Analyses searching for ttH and tH are becoming more sensitive
- So far, no deviations from the SM are observed, but it is only 5 years after the Higgs discovery
 - Still a long way to go towards a precise picture of the Higgs
 - There is still room for deviations pointing to new physics

BACKUP - ADDITIONAL MATERIAL

CMS

H(WW)

- Final state: $H \rightarrow WW \rightarrow e \mu$ (OS) + neutrinos
- Targeting ggH production mode, but also categories for VBF and VH
- Categorise by #leptons, jets and lep. charge (charge symmetry for signal but not for W+jets)
- Irreducible bkg. is WW production
 - Iower m_e for signal than for WW or top
- Main bkg. is W+jets and tt+jets, with 1 jet faking a lepton, estimated from data
- Other bkg. from MC with corrections
- Signal extracted from ML fit to 2-D distributions in m_{ℓℓ}-m_{HT} (only 1D for VBF and VH categories)
- Including background control regions in the fit

ICNFP 19.08.2017

CMS-PAS-HIG-16-021

H(WW)

- Results for 2015 (L=2.3/fb) + 2016 data (L = 12.9/fb)
- Excess of events compatible with H(WW) signal, 4.3(4.1 exp.) σ
- Signal strength $\mu = 1.05 \pm 0.25^{\text{stat}} \pm 0.03^{\text{theory}} \pm 0.07^{\text{syst}}$
- Analysis limited by stat. uncertainty

Signal strength modifier scan for prod. modes dominated by fermion and boson couplings

22

ttH, H(ττ)

- Final states with hadronically decaying τ
- Sensitive to ttH, with $H(\tau\tau)$, H(WW) and H(ZZ).
 - $= 1\ell + 2\tau_h OS$
 - $= 2\ell SS + 1\tau_h$
 - $= 3\ell + 1\tau_h$
- Irreducible background (tt+V and VV+jets) from simulation
- Reducible bkg. data-driven with fake-factor method
- ML fit to a discriminating variable
 - BDT discriminants, different in every category, to maximise signal vs. bkg. shape separation

ttH, H(ττ)

CMS-PAS-HIG-17-003

- Significance for SM Higgs signal of 1.4 (exp. 1.8) σ
- Best fit $\mu = 0.72^{+0.62}_{-0.53}$, upper limit $\mu < 2.0$ (exp. 1.1)

ttH, H(bb)

CMS-PAS-HIG-16-038

- Targets lepton+jets and dilepton ttbar decays
- Categories according to number of jets and b-jets
 - Higher jet and b-jet multiplicity for the ttH(bb) signal
- Use a combination of BDT discriminants and MEM weights.
- Analysed dataset = 12.9/fb @ 13 TeV

Results

Valeria Botta (DESY)

Measurements of the Higgs H(125) Boson at CMS

ICNFP 19.08.2017

25