

Search for supersymmetry with τ leptons in the CMS experiment

<u>Ilya Bobovnikov</u>, Alexis Kalogeropoulos, Isabell Melzer-Pellmann, Alexei Raspereza

55th Course of the International School of Subnuclear Physics, Erice, 14-23 June 2017

Motivation for SUSY

June 2017

Ilya Bobovnikov (Erice)

Background estimation

Search variables

- E_{T}^{miss} missing transverse energy
- M_{T2} "stransverse" mass

$$\mathbf{M_{T2}^2} \ = \ \min_{\vec{k_T} + \vec{l_T} = tot \ miss \ \vec{p}_T} \left\{ max \Big[\mathbf{M_T^2}(chain \ 1), \mathbf{M_T^2}(chain \ 2) \Big] \right\} \ \le \ m^2$$

• D_{ζ} – Discriminant used in legacy Higgs searches

$$D_{\zeta} = P_{\zeta,\text{mis}} - \alpha \cdot P_{\zeta,\text{vis}}$$

$$P_{\zeta,\text{mis}} = \vec{p}_{T,\text{mis}} \cdot \vec{\zeta}, \quad P_{\zeta,\text{vis}} = (\vec{p}_{T,e} + \vec{p}_{T,\mu}) \cdot \vec{\zeta}$$

$$\zeta - \text{bisector between the direction of the electron and that of the muon}$$

$$\alpha = 0.85 \text{ (optimized value)}$$

$$DY \text{Jets} \quad TT \text{Jets,WJets (signal)}$$

$$TT \text{Jets,WJets (signal)}$$

Control plots $(\mu \tau_h)$

8

Search region definition

Ilva Bobovnikov (Erice)

Interpretation

Only expected limits are calculated since data are blinded

No sensitivity to direct $\widetilde{ au}$ production has been achieved

DESY

Conclusion

- CMS
- Search for SUSY in events with τ leptons in the final state with 13 TeV data taken in 2016
- Various background estimation techniques
- Signal region optimization
- Results are interpreted in terms of simplified SUSY model and expected exclusion limits are calculated
- Plan to improve selection technique be sensitive to direct $\tilde{\tau}$ production and combine with all hadronic $(\tau_h \tau_h)$ channel

Thank you for attention

Commissioning of fits $(\mu \tau_h)$

CR 1

CR 2

Control regions are well described by the background prediction, and fluctuations are within the statistical and systematic uncertainties. The influence of the signal contamination is marginal.

Ilya Bobovnikov (Erice)

Binning

CMS	
	/
	CMS

$p_{\mathrm{T}}^{\mathrm{miss}}$	M_{T2}	Dζ	#SR 1-24	Category
		<-100	1	
<40	<40	>-100 & <0	2	
		>0	3	
	>40	>-500	4	
		<-100	5	
	<40	>-100 & <50	6	
	$\langle \rangle$	>50	>7	
>40 & <80	10 8 - 20	<-100	8	
	-40 a \00	>-100	9	
	>80	>-500	10	
$\left(\right)$	<40	<-100	11	
>80 & <120		>-100	12	0-Jets events
	>40 & <80	<-150	13	
		>-150	14	
	>80	>-500	15	
>120 & <250	< 40	<-100	16	
	< 40	>-100	17	
		<-150	18	
	>40 & <80	>-150 <-100	19	
		>-100	20	1
	>80 & <100	>-500	21	
	>100 & <120	>-500	22	
	>120	>-500	23	
>250	>0	>-500	24	

$p_{\rm T}^{\rm mass}$	M_{T2}	Dζ	#SR 25-53	Category
<40		<-150	25	
	40	>-150 & <-100	26	
		>-100 & <0	27	
		>0	28	
	>40	>-500	29	~
		<-100	30	
	<40	>-100 & <50	31	
		>50	32	$ \land \land $
>40 & <80	>40 & <80	<-100	33	
	>40 & <00	>-100	34	
	>80	>-500	35	
	<40	<-100	36	
	<40	>-100	37	
- PO & -120	~40 & ~90	<-150	38	1-Jet events
>00 & <120	>40 & <80	>-150	39	
	>80 & <120	>-500	40	1
	>120	>-500	> 41	1
	V/ /L	<-150	42	1
	<40	>-150 & <-100	43	
	116	>-100	44	
$\langle \rangle$	111	<-150	45	
>120 & <250	>40 & <80	>-150 <-100	46	1
$\langle \rangle$		>-100	47	
	>80 & <100	>-500	48	1
	>100 & <120	>-500	49	
	>120	>-500	50	
>250	> 80 < 100	>-500	51	
	>100 & <120	>-500	52	
	>120	>-500	53	

selection

Baseline selection

- Two leptons ($\mu\tau$, $e\tau$, or $e\mu$)
- No additional leptons (e or μ)
- $n_{
 m jet} \leq$ 1, where jets must have $p_{
 m T} >$ 20 GeV and $|\eta| <$ 2.4
- $n_{\text{b-tag}} = 0$, with the medium WP (0.8484) of CSVv2
- $20 < M_{\rm T} < 60 \,{
 m GeV}$ or $M_{\rm T} > 120 \,{
 m GeV}$ $(\mu \tau, e \tau)$
- $M_{\ell\ell} < 30 \,\text{GeV}$ and $90 \,\text{GeV} < M_{\ell\ell} < 250 \,\text{GeV}$ (e μ)

Signal region selection (SRcuts) optimized for generic SUSY search with τ's

- $\Delta |\eta|(\ell_1, \ell_2) < 2$
- $M_{\ell_1 \ell_2} > 20 \, \text{GeV}$
- $M_{\rm Tsum} > 30 \, {\rm GeV}$
- $p_{\rm T}(\ell_{1,2}) < 200 \,{
 m GeV} \,({
 m e}\mu)$
- $\Delta |\eta|(J_0, \ell_{1,2}) < 3$ (1-jet category only)
- $\Delta R(J_0, \tau) < 4 \ (\mu \tau, e \tau)$ (1-jet category only)
 - $J_{0,}$ stands for hadronic jet

$$M_{\mathrm{Tsum}} = M_{\mathrm{T}}(\ell_1, E_{\mathrm{T}}^{\mathrm{mis}}) + M_{\mathrm{T}}(\ell_2, E_{\mathrm{T}}^{\mathrm{mis}})$$

Additional selection criteria optimized to search for direct stau pair production

- $|d_z(\mu, e)| < 0.04 \,\mathrm{cm}$
- $|d_{xy}(\mu, e)| < 0.02 \,\mathrm{cm}$
- $Iso(\tau) > 0.85 \ (\mu \tau, e \tau)$
- $\Delta |\eta|(\ell_1, \ell_2) < 1.5$
- $\Delta \Phi(\ell_1, \ell_2) > 1.5$
- $2 < \Delta R(\ell_1, \ell_2) < 3.2$
- $M_{\ell_1 \ell_2} > 50 \, \text{GeV}$
- $M_{\rm Tsum} > 50 \, {\rm GeV}$

Corrections

- **Trigger and Lepton scale factors** (efficiencies have been obtained with *Tag & Probe* method from $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ selection)
- Muon and Electrons Tau fake rate: these are obtained from the TAU POG.
- Tau fake rate: Measuring the jets→tau fake from a Wjets enriched CR Applying nominal preselection of μ-τ
- Top p_T reweighting: to improve modelling of the top quark p_T spectrum
- **Z recoil corrections**: corrections to the the parallel and perpendicular parts of the E_{T}^{miss} (extracted from $Z \rightarrow \mu\mu$ selection, applied to Z-jets and W-jets events)
- Z p_T corrections: applied to describe the disagreement of data and simulation at high Z p_T

MuonID_Iso0p15

