Higgs couplings and properties from run 1 and run 2 measurements and their combination

Rainer Mankel (DESY)

on behalf of the ATLAS and CMS collaborations

29th Rencontres de Blois – Particle Physics and Cosmology 29 May 2017

Outline

The Higgs boson according to Run 1

⊠Run 2: a new level

- bosonic couplings
- fermionic couplings

Summary Summary

The Higgs boson in the SM: production & decay

Higgs boson production mechanisms

- → Significant improvements in theory
 - e.g. uncertainty of ggF cross sections reduced to ~½ (N³LO)

Higgs boson decay modes

The Large Hadron Collider

The Large Hadron Collider

- LHC performance exceeded by far the expectations for 2016
- ~40 fb⁻¹ of pp integrated luminosity delivered to ATLAS + CMS
 - → excellent availability, peak luminosity > 1.4 x 10³⁴ cm⁻² s⁻¹
 - → >6.5 x 10¹⁵ collisions recorded per experiment at 13 TeV

ATLAS & CMS experiments

The two multi-purpose detectors at the LHC

44 m x 25 m, 7,000 tons

29 m x 15 m, 14,000 tons

The Higgs boson according to LHC Run I

Higgs Mass (Run 1)

ATLAS+CMS PRL 114 (2015) 191803

- m_H is a free parameter of the SM \rightarrow crucial also for extraction of couplings
- Run 1 combination: based on the best-resolution decay modes, γγ and 4ℓ

Combined results from ATLAS + CMS:

$$m_H = 125.09 \pm 0.21 (stat.) \pm 0.11 (syst.)$$
 GeV

→ already very remarkable precision of ~0.2 %

Production & decay (Run 1)

ATLAS+CMS JHEP 08 (2016) 045

• Global fits of either production (μ_i) or decay (μ^f) signal strengths

- → Clear evidence for VBF. ttH production somewhat high, bb decay slightly low.
- → Good consistency across experiments. Overall good agreement with SM.

Couplings (Run 1)

ATLAS+CMS JHEP 08 (2016) 045

- Leading-order motivated κ framework
 - For each coupling, introduce a modifier κ , where κ =+1 corresponds to SM value
 - Express all cross sections and decay widths in terms of coupling modifiers
 - Example: qq → H

- With $\sigma \times BR$ measurements of all relevant channels, compute likelihood functions and profile the various coupling modifiers
- Also contributions of BSM decay modes to the total Higgs boson width Γ_H can be considered

$$\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{1 - BR_{BSM}}$$

Individual couplings

- Individual coupling study includes $H \rightarrow \mu\mu$ analysis (upper limit only)
- κ_V and κ_F are global modifiers for vector (W, Z) and fermion couplings (t, τ , b)
 - agreement with $\kappa_V = \kappa_F = 1$ (SM couplings)
- Mass dependence of Higgs couplings clearly shown
 - finger print of a SM Higgs boson

Indications for BSM effects?

- New physics could manifest itself in
 - decay modes to invisible particles
 - BSM particles in loops: (gg fusion, γγ decay mode) → fit $κ_g$, $κ_γ$ as autonomous parameters

- → BR_{BSM} < 0.34 (95% CL) → up to $\frac{1}{3}$ of decay width may yet be unaccounted for
- → No indication for modification of loops
- → In summary: Run 1 results confirm properties as expected for a SM Higgs boson

Run 2: a new level of Higgs boson research

Bosonic couplings

$H\rightarrow \gamma\gamma$ @ 13 TeV

CMS PAS HIG-17-015

ATLAS-CONF-2016-067

→ The Higgs signal in the di-photon channel has been clearly re-discovered in the 2016 data

H→γγ: Signal strength

- → Signal strength agrees well with SM expectations
- → Good agreement between ATLAS and CMS
- Fiducial, differential and Simplified Template cross sections:
 - see next presentation by Stefan Gadatsch

ATLAS: $\mu = 0.85^{+0.22}_{-0.20}$ CMS: $\mu = 1.16^{+0.15}_{-0.14}$

$H \rightarrow \gamma \gamma$ properties

NEW!

 Signal strengths for fermionic (ggH, ttH) vs bosonic (VBF, VH) production modes (2D likelihood scan)

 Coupling modifiers in 2D likelihood scans

- γ vs. g
- fermion vs. vector boson

In all cases, no deviations from SM couplings observed

H→ZZ*→4 ℓ (full 2016 statistics)

CMS PAS HIG-16-041

ATLAS-CONF-2017-032

- Improve sensitivity by introducing mutually exclusive categories
- Signal / background discrimination performed based on matrix elements

- Signal extraction performed in 2D variable space $(m_{4\ell}, \mathcal{D}_{bkg}^{kin})$
- Simultaneous fit to all categories

$H \rightarrow ZZ^* \rightarrow 4 \ell$

→ Excellent mass resolution. Signal strength in perfect agreement with SM

 Fiducial and differential cross sections: see next talk

CMS PAS HIG-16-041

ATLAS:
$$\sigma_{tot} = 69^{+10}_{-9} \pm 5 \ pb$$

 $\sigma_{SM} = 55.6 \pm 2.5 \ pb, \ p = 0.19$

CMS:
$$\mu = 1.05^{+0.19}_{-0.17}$$

Run 2 mass (48)

CMS PAS HIG-16-041

- Significant methodical improvements compared to the Run I analysis
- 3D fit, $\mathcal{L}(m'_{4l}, \mathcal{D}'_{\text{mass}}, \mathcal{D}^{\text{kin}}_{\text{bkg}})$
- Kinematic fit: higher mass Z is usually on-shell
 - → apply mass constraint
- Likelihood scan of Higgs mass, combining the different 4l decay channels
- Result:
 - $m_H = 125.26 \pm 0.20 \, (stat.) \pm 0.08 \, (syst.) \, GeV$
 - observed uncertainty is smaller than expected by ~ 49 MeV (p-value ~18%)

- → This single channel, single experiment Run 2 measurement is already more precise than the full ATLAS+CMS Run 1 combination:
 - $m_H = 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.) } \text{GeV}$
 - still statistics-limited

Run 2 couplings

ATLAS-CONF-2016-079

 Vector vs fermion coupling (assume no new particles in the loops)

ATLAS-CONF-2016-081

- Measurements of (σ⋅ BR) in ggF and VBF are generally correlated, since they contribute jointly to event categories → contours are shown
- → Compatible with SM (p-value 11%)

Anomalous VVH couplings?

- Anomalous HVV couplings (→ BSM) can show both in production (VBF, VH) and decay (H→ZZ) → investigate in final states with 4ℓ
- Use full angular information from production & decay modes, compare with matrix element computations (JHUGen+MCFM, MELA package)
- Discriminants to separate/isolate
 - signal from background
 - anomalous from SM couplings
 - interference contribution

$$\mathcal{D}_{bkg} = \frac{\mathcal{P}_{SM}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{bkg}(\vec{\Omega})}.$$

$$\mathcal{D}_{BSM} = \frac{\mathcal{P}_{SM}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{BSM}(\vec{\Omega})}. \quad \mathcal{D}_{int} = \frac{\mathcal{P}_{SM-BSM}^{int}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{BSM}(\vec{\Omega})},$$

Anomalous VVH couplings (cont'd)

- With an overall likelihood fit, determine coefficients of general tensor structures in scattering amplitudes as allowed by Lorentz symmetry, beyond the SM case
 - including lowest-order terms in form factor expansion
 - assume couplings for WW and ZZ are identical
- → All BSM-related coefficients are found to be compatible with zero (=SM)

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.30^{+0.19}_{-0.21} [-0.45, 0.66]$	$0.000^{+0.017}_{-0.017}$ [-0.32, 0.32]
$f_{a2}\cos(\phi_{a2})$	$0.04_{-0.04}^{+0.19}$ [-0.69, -0.64] \cup [-0.04, 0.64]	$0.000^{+0.015}_{-0.014}$ [-0.08, 0.29]
$f_{\Lambda 1}\cos(\phi_{\Lambda 1})$	$0.00^{+0.06}_{-0.33}$ [-0.92, 0.15]	$0.000^{+0.014}_{-0.014}$ [-0.79, 0.15]
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.16_{-0.25}^{+0.36} [-0.43, 0.80]$	$0.000^{+0.020}_{-0.024} [-0.49, 0.80]$

CMS PAS HIG-17-011

Anomalous couplings (cont'd)

NEW!

ATLAS-CONF-2017-032

- Distribution of m_{12} vs m_{34} (where $m_{12} > m_{34}$) is sensitive to modified Higgs couplings
 - studied in the context of pseudo-observables (Eur.Phys.J. C75 (2015) 128 + 341)
 - e.g. modified contact terms $\rightarrow \epsilon_L$ and ϵ_R
- (m_{12}, m_{34}) distribution mapped to 5 bins
 - good data / MC agreement

Anomalous couplings (cont'd)

ATLAS-CONF-2017-032

- Assuming lepton flavor universality. Also considering modification of Higgs-to-Z coupling (κ)
- SM parameters ($\epsilon_L = \epsilon_R = 0$; $\kappa = 1$) are included within allowed region
 - no indication for anomalous couplings

CERN-EP-2017-095

- In the SM, $H \rightarrow Z\gamma$ proceeds through loop diagrams similar to $H \rightarrow \gamma\gamma$
 - with BR of similar magnitude (1.54×10^{-3})
- Various BSM scenarios could lead to a deviating BR
 - e.g. composite scalars, new particles in the loop
- Main backgrounds: non-resonant $Z + \gamma$, Z + jet (fake photon)
- ATLAS uses BDT to separate signal from backgrounds
 - six categories

$H \rightarrow Z\gamma$ (cont'd)

- No signal observed (yet). $\sigma \cdot BR(H \to Z\gamma) < 6.6 (\sigma \cdot BR)_{SM} (5.2 exp.) @ 95\% CL$
- Assuming SM Higgs cross section: $BR(H \rightarrow Z\gamma) < 0.01$

Fermionic couplings

CMS PAS HIG-16-043

- Four decay mode combinations used: $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$, $e\mu$
- Categories: 0 jet, VBF, boosted
- Main backgrounds: Drell-Yan, W/Z+jets, $t\bar{t}$, QCD
- Global likelihood fit in 2D distributions of discriminating variables in all channels
 - m_{vis} , p_T^{μ} , $m_{\tau\tau}$, m_{ii} , $p_T^{\tau\tau}$, τ_h decay mode

→ Clear excess at m_H=125 GeV

$H \rightarrow \tau\tau$ [cont'd]

Minimum of p-value at m_H=125 GeV

CMS (Run 2):
$$\mu = 1.06 \pm 0.25 \quad \text{(4.9σ obs., 4.7σ exp.)}$$
 [ATLAS + CMS (Run 1):
$$\mu = 1.12^{+0.25}_{-0.23} \quad \text{(5.5 σ)]}$$

→ For the first time, single-experiment sensitivity for a <u>fermionic</u> decay channel touches 5σ level

- H→bb dominant decay mode in SM, but not yet discovered
 - golden channel: associated production with vector boson (W or Z)
 - three main categories: no lepton $(Z \rightarrow vv)$, one lepton $(W \rightarrow \ell v)$, two leptons $(Z \rightarrow \ell \ell)$. Cross check with VZ production.

- Not yet exceeding Run 1 sensitivity
- → Wait for analysis of full 2016 dataset


```
ATLAS Run 2: \mu = 0.21^{+0.51}_{-0.50} (0.42\sigma) [ATLAS + CMS (Run 1): \mu = 0.69^{+0.29}_{-0.27} (2.6 \sigma)]
```


H→bb in boosted topology

CMS PAS HIG-17-010

- NEW for Blois2017!
- Inclusive search for H→bb in gluon fusion traditionally considered hopeless
 - overwhelming multi-jet background
- New idea: inclusive Higgs search at very high p_T [e.g. JHEP05 (2014) 022]
 - "boosted topology"
 - both b's in a single jet → substructure
 - recoiling quark or gluon jet
- Methodology:
 - reconstruct H decay products as one AK8 jet
 - p_⊤ > 450 GeV
 - double b-tag within jet
 - soft drop algorithm to reconstruct mass
- Background estimation using control region of events with jets failing double b-tag

H→bb boosted (cont'd)

- Clear observation of resonant Z signal (standard candle)
 - $\mu_Z = 0.78^{+0.23}_{-0.19}$, 5.1 σ (5.8 σ expected)
 - proof of principle
- Higgs boson searched in the same distribution
 - $\mu_H = 2.32^{+1.80}_{-1.57}$, 1.5 σ (0.7 σ expected)
- → Novel analysis. Very promising technique

ATLAS-CONF-2017-014

- Yukawa coupling of 2nd generation fermion. SM predicts very small BR (2.18×10⁻⁴).
- Clean experimental signature. Main background: Drell-Yan
- Six categories for gluon fusion, two for VBF

 $\mu = -0.1 \pm 1.5$ $\mu < 3.0 \ obs. (3.1 \ exp.)$

 \rightarrow Channel gradually comes into reach \rightarrow hope for 3σ sensitivity before HL-LHC

ttH: bb channel

ATLAS-CONF-2016-080

CMS PAS HIG-16-038

- Allows direct measurement of top quark Yukawa coupling. Very challenging.
- ttH(→bb) analysis:
 - two-stage multivariate approach (ATLAS), BDT + matrix element (CMS)

- ATLAS: $\mu = 2.1^{+0.5}_{-0.5}(stat.)^{+0.9}_{-0.7}(syst.)$; CMS: $\mu = -0.19^{+0.45}_{-0.44}(stat.)^{+0.66}_{-0.68}(syst.)$
- Increasing role of systematic uncertainties
- No clear evidence for ttH(→bb) yet → wait for results from full 2016 dataset

ttH: multi-lepton channel

ATLAS-CONF-2016-058

CMS PAS HIG-17-004

- ttH with mainly H→WW, ZZ, ττ
 - for CMS, events with ≥1 τ_h go into separate analysis (CMS PAS HIG-17-003)
- Select events with ℓ[±]ℓ[±] or ≥3ℓ, plus jets and btags
- Main backgrounds:
 - tt + W / Z / γ^* production
 - tt + jets
- Signal extraction strategies:
 - ATLAS: counting experiment
 - CMS: BDT approach for 2l and 3l

→ "Evidence" for ttH production from a single channel

ttH: combination

- ATLAS performed combination of all channels at level of ~13 fb⁻¹
 - → Run 1 + Run 2 results are in good agreement, similar sensitivity
- CMS also measured ttH in additional channels
 - \rightarrow also ttH($\rightarrow \gamma \gamma$) gives >3 σ
- Looking forward to full 2016 ttH combination

ATLAS-CONF-2016-068

CMS PAS HIG-17-003

CMS PAS HIG-16-040

CMS PAS HIG-16-041

CMS PAS HIG-16-038

Summary

- Run 1 has established the essential finger print of the Higgs boson
 - agrees with SM, although BSM Higgs sector or couplings not excluded
- The first ~40 fb⁻¹ of Run 2 @ 13 TeV have already effected big impact
- Improved sensitivity to couplings & other properties already visible
 - many new ideas & methods
 - not all analyses yet at full 2016 statistics → much more to come
- Since end of April, beams are back circulating in the LHC
- First stable beams last Tuesday
- Scrubbing planned for next week
- Physics run planned to start very soon (2nd week of June)
- Target: 90 fb⁻¹ (2017+2018)

from: M. Solfaroli, LHCC Open Session Report, 10-May

Higgs properties in the parallel session (Wed 31 May)

Backup

H→WW

- Strong backgrounds from Drell-Yan and di-boson processes
 - search in e⁺μ⁻ and e⁻μ⁺ final states
 - VBF and VH processes
 - Signal extraction from BDT, backgrounds estimated in CR

ATLAS:
$$\mu_{VBF} = 1.7^{+1.1}_{-0.9}$$
 , 5.8 fb⁻¹ $\mu_{VH} = 3.2^{+4.4}_{-4.2}$, "

ATLAS-CONF-2016-112

VBF H→bb

CMS PAS HIG-16-003

- Search for SM Higgs boson in a fully hadronic final state!
 - challenging trigger + backgrounds

- Regression of jet p_T → improves mass resolution
- Event classification with BDT
- Combination of 2012 + 2015 data
- Further improvement expected with 2016 data

Run 1: $\mu = 2.8^{+1.6}_{-1.4}$ Run 2 (2015): $\mu = -3.7^{+2.4}_{-2.5}$ Combined: $\mu = 1.3^{+1.2}_{-1.1}$

VBF H→bb with photon

ATLAS-CONF-2016-063

- Dramatic enhancement of signal / background ratio through requirement of additional hard photon
- Destructive interference in central photon background processes
- Easy triggering: γ (p_T>25 GeV) + 4 jets
- Simultaneous fit of m_{bb} in three BDT intervals (two are shown)

H +
$$\gamma$$
 : $\mu = -3.9^{+2.8}_{-2.7}$
Z + γ : $\mu = 0.3 \pm 0.8$

- → Very promising sensitivity
- → Complementary to inclusive analysis

LHC Schedule 2017

LHC schedule 2017

a new production year

 \sim 45fb⁻¹ (final goal on March 1st)

keeping the LHC availability close to 50% (stable beams)

Initially 15 days of MD; later during 2017 according integrated luminosity: + 3 days?

Special runs: VdM scans,... and see slide 24

	Controls Jan interventions					Feb				Mar		_	Sta te:	rt powering sts phase 1
Wk	1		2	3	4	5	6	7	8	9	10	11	12	13
Mo	2		9	16	23	30	6	13	20	27	6	13	20	27
Tu		+												
We														
Th							Te	chnical stop	p (EYETS)					
Fr														*
Sa														
Su														

											Scr	ubbing			
	Apr	LHC	to OP		May					June	June				
Wk	14		15	16	17	7	18	19	20	21	22	23	24	25	26
Mo	3		10	Easter Mon 17		24	1st May 1	8	15	2	2 29	Whit	5 12	5	19 26
Tu												¥		physic	
We					150									dielo	
Th					checkout					Ascension				Spe	
Fr		G.	Friday												MD 1
Sa					Machine			Re	commission with beam						
Su					ž										

	July		Aug					Sep					
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Mo	3	10	17	24	E 31	7	14	21	28	4	11	18	25
Tu					physic								
We	TS1				o leis							TS2	
Th					Spe					Jeune G			
Fr											MD 2		
5a													
Su													

											E	End of run (00:00)				
		Oct			Nov Dec						Ĩ	L L				
	Wk	40	41	42	43	44	45	46	47	48	49		50	51	52	_
I	Mo	2	9	16	23	30	6	13	20	27	4	•	11	18	Xmas	25
I	Tu															
I	We				MD 3							Ţ,	chnical	stop (YETS)		
I	Th											Ľ	crimicar	stop (TETS)		
I	Fr															
I	Sa															
I	Su															

LHC schedule long-term

Run 2 and Run 3

Ion runs end of 2018 (Pb-Pb)

LHC full schedule

κ parameters

Production	Loops	Interference	Multip	olicative factor
$\sigma(ggF)$	✓	<i>b</i> − <i>t</i>	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{t}^2 + 0.01 \cdot \kappa_{b}^2 - 0.07 \cdot \kappa_{t} \kappa_{b}$
$\sigma(VBF)$	-	_	~	$0.74 \cdot \kappa_{W}^{2} + 0.26 \cdot \kappa_{Z}^{2}$
$\sigma(WH)$	-	_	~	κ_{W}^{2}
$\sigma(qq/qg \to ZH)$	-	_	~	$\kappa_{\rm Z}^2$
$\sigma(gg \to ZH)$	✓	Z-t	~	$2.27 \cdot \kappa_{\mathrm{Z}}^2 + 0.37 \cdot \kappa_{\mathrm{t}}^2 - 1.64 \cdot \kappa_{\mathrm{Z}} \kappa_{\mathrm{t}}$
$\sigma(ttH)$	-	_	~	$\kappa_{\rm t}^2$
$\sigma(gb \to WtH)$	-	W-t	~	$1.84 \cdot \kappa_{t}^2 + 1.57 \cdot \kappa_{W}^2 - 2.41 \cdot \kappa_{t} \kappa_{W}$
$\sigma(qb \to tHq)$	-	W-t	~	$3.4 \cdot \kappa_{\rm t}^2 + 3.56 \cdot \kappa_{\rm W}^2 - 5.96 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(bbH)$	-	_	~	$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	-	_	~	$\kappa_{\rm Z}^2$
Γ^{WW}	_	_	~	κ_{W}^{2}
$\Gamma^{\gamma\gamma}$	✓	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{\mathrm{W}}^2 + 0.07 \cdot \kappa_{\mathrm{t}}^2 - 0.66 \cdot \kappa_{\mathrm{W}} \kappa_{\mathrm{t}}$
$\Gamma^{\tau\tau}$	-	_	~	κ_{τ}^2
Γ^{bb}	_	_	~	$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^{2}
Total width for $BR_{BSM} = 0$				F
				$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$
$\Gamma_{ m H}$	✓	_	$\kappa_{\rm H}^2 \sim$	$+0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} +$
				$+0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 +$
				$+ 0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_\mu^2$

Spin and parity

ATLAS arXiv:1506.05669v2, Eur.Phys.J. C75 (2015) 476

CMS PAS HIG-14-018, Phys.Rev. D92 (2015) 012004

Boson- vs fermion-mediation

- Compare production processes associated with Higgs couplings to
 - vector bosons (VBF, VH)
 - fermions (ggF, ttH)

$$\mu^f = \frac{BR^f}{(BR^f)_{SM}}.$$

- 10 parameter fit of μ^f_{VBF+VH} and $\mu^f_{ggF+ttH}$ in the 5 decay modes
- Good agreement with SM $(\mu_{VBF+VH}^f = \mu_{qqF+ttH}^f = 1)$

$H \rightarrow ZZ^* \rightarrow 4 \ell \text{ (cont'd)}$

Varying purity and production profiles in categories

Run: 280862 Event: 53554366 2015-10-02 16:24:44 CEST

ATLAS-CONF-2017-032

Final state	SM Higgs	ZZ^*	$Z + jets, t\bar{t}$	Expected	Observed
			WZ, ttV , VVV		
4μ	20.1 ± 2.1	9.8 ± 0.5	1.3 ± 0.3	31.2 ± 2.2	33
4e	10.6 ± 1.2	4.4 ± 0.4	1.3 ± 0.2	16.3 ± 1.3	16
$2e2\mu$	14.2 ± 1.4	7.1 ± 0.4	1.0 ± 0.2	22.3 ± 1.5	32
$2\mu 2e$	10.8 ± 1.2	4.6 ± 0.4	1.4 ± 0.2	16.8 ± 1.3	21
Total	56 ± 6	25.9 ± 1.5	5.0 ± 0.6	87 ± 6	102

Vector vs fermion coupling

 Vector vs fermion coupling (assume no new particles in the loops)

Run 2 (ZZ* only)

Cross sections in H→γγ and ZZ

ATLAS Preliminary $m_H = 125.09 \text{ GeV}$ $\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1}(\gamma \gamma), 14.8 \text{ fb}^{-1}(ZZ)$

Parameter value norm. to SM value

Run 2 width measurement

- Using on-shell production → no assumptions needed regarding BSM particles or interactions
- Mass resolution ~GeV → allow for signal/background interference

- Γ_{H} < 1.10 GeV (SM: Γ_{H} ~4 MeV)
 - less stringent than indirect limit from off-shell production (17.4 MeV) [PLB736 (2014) 64]

Anomalous VVH couplings

- HVV scattering amplitude: three tensor structures
 - including a form factor expansion within the first structure

$$\left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} + \frac{\kappa_{3}^{\text{VV}}(q_{1} + q_{2})^{2}}{\left(\Lambda_{Q}^{\text{VV}}\right)^{2}}\right] m_{\text{V}1}^{2} \epsilon_{\text{V}1}^{*} \epsilon_{\text{V}2}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

Translation between couplings in different formulations

couplings in PO formulation	couplings in AC or EFT formulation
κ_{ZZ}	$\frac{v}{2}\left(a_1-2\frac{m_Z^2}{(\Lambda_1)^2}\cos\phi_{\Lambda 1}\right)$
ϵ_{ZZ}	va_2
$\epsilon_{ m ZZ}^{ m CP}$	va_3
ϵ_{ZfR}	$-g_Z^{fR} \frac{v m_Z^2}{2(\Lambda_1)^2} \cos \phi_{\Lambda 1} + e \frac{v m_Z^2}{2(\Lambda_1^{Z\gamma})^2} \cos \phi_{\Lambda 1}^{Z\gamma}$
$\epsilon_{\mathrm ZfL}$	$-g_Z^{fL} \frac{v m_Z^2}{2(\Lambda_1)^2} \cos \phi_{\Lambda 1} + e \frac{v m_Z^2}{2(\Lambda_1^{Z\gamma})^2} \cos \phi_{\Lambda 1}^{Z\gamma}$

Anomalous VVH couplings

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.30^{+0.19}_{-0.21} [-0.45, 0.66]$	$0.000^{+0.017}_{-0.017} [-0.32, 0.32]$
$f_{a2}\cos(\phi_{a2})$	$0.04^{+0.19}_{-0.04}$ [-0.69, -0.64] \cup [-0.04, 0.64]	$0.000^{+0.015}_{-0.014} [-0.08, 0.29]$
$f_{\Lambda 1}\cos(\phi_{\Lambda 1})$	$0.00^{+0.06}_{-0.33} [-0.92, 0.15]$	$0.000^{+0.014}_{-0.014} [-0.79, 0.15]$
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.16^{+0.36}_{-0.25} [-0.43, 0.80]$	$0.000^{+0.020}_{-0.024} [-0.49, 0.80]$

Anomalous couplings (cont'd)

ATLAS-CONF-2016-079

- Effective field theory approach: Higgs characterization model (P. Artoisenet et al., JHEP 11 (2013) 043)
 - determine BSM couplings κ_{HVV} (0⁺) and κ_{AVV} (0⁻), from H decay variables
 - assume $\kappa_{HVV} = \kappa_{HWW} = \kappa_{HZZ}$ and $\kappa_{AVV} = \kappa_{AWW} = \kappa_{AZZ}$
- Mild tension
 of κ_{HVV} with SM
 (agreement
 within 2.1 σ)
- → No significant deviation from SM observed

Table 13: Observed and expected limits at 95% CL on κ_{HVV} and $\kappa_{AVV} \cdot \sin \alpha$.

Not excluded	KHV	'V	$\kappa_{AVV} \cdot \sin \alpha$			
range at 95% CL	expected	observed	expected	observed		
	[-6.3, 5.1]	[0.9, 7.5]	[-6.3, 6.5]	[-9.7, 11.0]		

- Four decay mode combinations used: $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$, $e\mu$
- Categories: 0 jet, VBF, boosted
- Main backgrounds: Drell-Yan, W/Z+jets, $t\bar{t}$, QCD
- Discriminating variables: m_{vis}, m_{ττ}

H→ττ: categories & variables

Table 2: Category selection and variables used to build the two dimensional kinematical distributions. The events not selected in the 0-jet nor VBF category are included in the boosted category.

		Selection	
	0-jet	VBF	Boosted
еμ	No jet	2 jets, $m_{ij} > 300 \text{GeV}$	Others
$\mu au_{ m h}$	No jet	\geq 2 jets, $m_{jj} > 300 \text{GeV}$, $p_{\text{T}}^{\tau\tau} > 50 \text{GeV}$, $p_{\text{T}}^{\tau_{\text{h}}} > 40 \text{GeV}$	Others
$\mathrm{e} au_{\mathrm{h}}$	No jet	\geq 2 jets, $m_{jj} > 300 \mathrm{GeV}$, $p_{\mathrm{T}}^{\bar{\tau}\tau} > 50 \mathrm{GeV}$	Others
$ au_h au_h$	No jet	\geq 2 jets, $p_{\mathrm{T}}^{\hat{ au}\hat{ au}} > 100\mathrm{GeV}$, $\Delta\eta_{jj} > 2.5$	Others
		Variables	
еµ	$p_{\mathrm{T}}^{\mu}, m_{\mathrm{vis}}$	$m_{jj}, m_{\tau\tau}$	$p_{\mathrm{T}}^{\tau\tau}, m_{\tau\tau}$
$\mu au_{ m h}$	$\tau_{\rm h}$ decay mode, $m_{ m vis}$	$m_{jj}, m_{\tau\tau}$	$p_{\mathrm{T}}^{\tau\tau}, m_{\tau\tau}$ $p_{\mathrm{T}}^{\tau\tau}, m_{\tau\tau}$
$\mathrm{e} au_{\mathrm{h}}$	$\tau_{\rm h}$ decay mode, $m_{ m vis}$	$m_{jj}, m_{ au au}$	$p_{\mathrm{T}}^{\tau\tau}$, $m_{\tau\tau}$
$ au_{ m h} au_{ m h}$	$m_{\tau\tau}$	$m_{jj}, m_{\tau\tau}$	$p_{\mathrm{T}}^{\tau\tau}, m_{\tau\tau}$

- Cross check with standard candle (ATLAS):
 - VZ production
 - $\mu_{VZ} = 0.91 \pm 0.17 \, (stat.)_{-0.27}^{+0.32} (syst.)$
 - VZ signal observed with 3.0σ significance
- VHbb production:
 - ATLAS: $\mu = 0.21^{+0.51}_{-0.50} (0.42\sigma)$
 - CMS (Run 1): $\mu = 1.0 \pm 0.5$ (2.1 σ)
 - " (+VBF,ttH): $\mu = 1.03^{+0.44}_{-0.42}$ (2.6 σ)
- Sensitivity still significantly below 3σ

• m_{bb} in different Categories

- $ttH(\rightarrow \tau\tau)$:
 - at least 1 hadronic τ decay
 - significance 1.4σ (1.8σ exp.)

CMS PAS HIG-17-003

