Searches for h(125) properties beyond the Standard Model at the CMS experiment

Teresa Lenz DESY (on behalf of the CMS Collaboration)

29th Rencontres de Blois

May 31st, 2017

A Higgs boson was found!

A Higgs boson was found!

But what kind of Higgs boson?

A Higgs boson was found!

But what kind of Higgs boson?

We already know a lot about this state at 125 GeV:

- It is a scalar particle.
- Its mass is 125 GeV.
- Its couplings are compatible with the SM.
- $\rightarrow\,$ Its properties are very much SM-like.

A Higgs boson was found!

But what kind of Higgs boson?

We already know a lot about this state at 125 GeV:

- It is a scalar particle.
- Its mass is 125 GeV.
- Its couplings are compatible with the SM.
- $\rightarrow\,$ Its properties are very much SM-like.

A Higgs boson was found!

We already know a lot about this state at 125 GeV:

- It is a scalar particle.
- Its mass is 125 GeV.
- Its couplings are compatible with the SM.
- $\rightarrow\,$ Its properties are very much SM-like.

Still 34% branching ratio for non-SM decays possible (at 95% CL).

Teresa Lenz

How can new physics affect h(125) properties?

- Additional loop contributions from new particles alter couplings.
- ▶ New open decay channels to SM or non-SM particles.

How can new physics affect h(125) properties?

- Additional loop contributions from new particles alter couplings.
- ► New open decay channels to SM or non-SM particles.

Possible consequences for h(125):

Lepton flavour violating h(125) decays (CMS-PAS-HIG-17-001¹³ TeV)

How can new physics affect h(125) properties?

- Additional loop contributions from new particles alter couplings.
- ► New open decay channels to SM or non-SM particles.

- Lepton flavour violating h(125) decays (CMS-PAS-HIG-17-001¹³ TeV)
- New decays to other light Higgs bosons (1701.02032^{8 TeV})

How can new physics affect h(125) properties?

- Additional loop contributions from new particles alter couplings.
- ► New open decay channels to SM or non-SM particles.

- Lepton flavour violating h(125) decays (CMS-PAS-HIG-17-001¹³ TeV)
- New decays to other light Higgs bosons (1701.02032^{8 TeV})
- Anomalous couplings of h(125):
 - to itself (CMS-PAS-HIG-17-002¹³ TeV), CMS-PAS-HIG-17-006¹³ TeV)

How can new physics affect h(125) properties?

- Additional loop contributions from new particles alter couplings.
- ► New open decay channels to SM or non-SM particles.

- Lepton flavour violating h(125) decays (CMS-PAS-HIG-17-001¹³ TeV)
- New decays to other light Higgs bosons (1701.02032^{8 TeV})
- Anomalous couplings of h(125):
 - ▶ to itself (CMS-PAS-HIG-17-002¹³ TeV), CMS-PAS-HIG-17-006¹³ TeV)
 - ▶ to vector bosons (CMS-PAS-HIG-17-011¹³ TeV)

How can new physics affect h(125) properties?

- Additional loop contributions from new particles alter couplings.
- New open decay channels to SM or non-SM particles.

Possible consequences for h(125):

- Lepton flavour violating h(125) decays (CMS-PAS-HIG-17-001¹³ TeV)
- ▶ New decays to other light Higgs bosons (1701.02032⁸ TeV)
- Anomalous couplings of h(125):
 - ▶ to itself (CMS-PAS-HIG-17-002¹³ TeV), CMS-PAS-HIG-17-006¹³ TeV)
 - ▶ to vector bosons (CMS-PAS-HIG-17-011¹³ TeV)

All 13 TeV results with full 2016 dataset!

Search for lepton flavour violating h(125) decays

No flavour-changing Higgs decays possible in the Standard Model.

- $\rightarrow\,$ Yukawa matrices are flavour diagonal in the SM.
- $\rightarrow\,$ Not the case in models beyond the SM with two Higgs doublets.

Search for lepton flavour violating h(125) decays

No flavour-changing Higgs decays possible in the Standard Model.

- $\rightarrow\,$ Yukawa matrices are flavour diagonal in the SM.
- $\rightarrow\,$ Not the case in models beyond the SM with two Higgs doublets.

Lessons from 2012 and 2015 data:

- Excess (2.4σ) in h(125) → μτ at 8 TeV at CMS.
 Best fit branching ratio: 0.84 ± 0.38%
- Also at ATLAS small excess (1σ) at 8 TeV.
 - Best fit branching ratio: $0.53 \pm 0.51\%$
- > 2015 results did not allow firm conclusion.

Search for lepton flavour violating h(125) decays

No flavour-changing Higgs decays possible in the Standard Model.

- $\rightarrow\,$ Yukawa matrices are flavour diagonal in the SM.
- $\rightarrow\,$ Not the case in models beyond the SM with two Higgs doublets.

Lessons from 2012 and 2015 data:

- Excess (2.4σ) in h(125) → μτ at 8 TeV at CMS.
 Best fit branching ratio: 0.84 ± 0.38%
- Also at ATLAS small excess (1σ) at 8 TeV.
 - Best fit branching ratio: $0.53 \pm 0.51\%$
- 2015 results did not allow firm conclusion.

But new 2016 result will ...

Search for lepton flavour violating h(125) decays 13 TeV

CMS-PAS-HIG-17-001

Final states:
$$h(125) \rightarrow \tau \mu$$
 and $h(125) \rightarrow \tau e$

Major challenge:

• Discrimination against $Z \rightarrow \tau \tau$ background

- $\rightarrow~$ Done with the help of kinematic quantities
 - Transverse momentum of e and μ
 - Missing transverse energy
 - Collinear mass

•
$$M_{
m col} = M_{
m vis}(au, \mu/e)/\sqrt{x_{ au}^{
m vis}}$$

2016, 35.9 fb⁻¹ (13 TeV)

Search for lepton flavour violating h(125) decays 13 TeV

CMS-PAS-HIG-17-001

Selection steps:

- Require $\mu(e)$ and $\tau (\tau_h, \tau_e, \tau_\mu)$.
- Veto events with additional e, μ , τ .
- 4 different categories for different Higgs production mechanisms.

Multivariate analysis technique

- Boosted Decision Tree classifies signal vs. background events.
- Input variables:
 - \blacktriangleright p_{T}^{e} , p_{T}^{μ} , $p_{\mathrm{T}}^{\tau_{h}}$
 - $\blacktriangleright M_{col}, M_{T}(e, \not\!\!E_{T}), M_{T}(\mu, \not\!\!E_{T}), M_{T}(\tau_{h}, \not\!\!E_{T})$
 - $\Delta \phi(e, \not\!\!E_T), \ \Delta \phi(\mu, \not\!\!E_T), \ \Delta \phi(\tau_h, \not\!\!E_T)$

• Second non-BDT approach: using M_{col} as final discriminator

Search for lepton flavour violating h(125) decays 13 TeV

CMS-PAS-HIG-17-001

35.9 fb⁻¹(13 TeV)

- $\rightarrow\,$ Result is compatible with Standard Model expectation.
- ightarrow Best fit: $\mathcal{B}(h
 ightarrow\mu au)=0.00\pm0.12\%$.
- ightarrow Upper 95% CL limit: $\mathcal{B}(h
 ightarrow \mu au) <$ 0.25%.

 $\mu \tau_{had}^{}$, 0 Jets 0.51% (0.43%) h→uτ: BDT Fit μτ_{bad}, 1 Jet Observed 0.53% (0.56%) Median expected 68% expected μτ_{bad}, 2 Jets 95% expected 0.56% (0.94%) $\mu \tau_{had}$, VBF 0.51% (0.58%) μτ_o, 0 Jets ו 1.30% (0.83%) μτ_, 1 Jet 1.34% (1.19%) μτ_o, 2 Jets × 2.27% (1.98%) μτ_., VBF ≫ 1.79% (1.62%) H→uτ 0.25% (0.25%) 12 2 8 10 14 95% CL Limit on Br($H \rightarrow \mu \tau$), %

CMS Preliminary

8 TeV

1701.02032

Even lighter Higgs bosons possible in many models beyond the SM.

- ► E.g. Next-to-Minimal Supersymmetric Standard Model $H H S \rightarrow \text{after SSB} \rightarrow h_1 h_2 h_3 a_1 a_2 h^{\pm}$
- ► A light pseudoscalar Higgs (*a*₁) possible.
- Search for $h(125) \rightarrow a_1 a_1$ in various final states performed:
 - $h \rightarrow a_1 a_1 \rightarrow 4 \mu$
 - $\blacktriangleright h \rightarrow a_1 a_1 \rightarrow 4\tau$
 - $h \rightarrow a_1 a_1 \rightarrow 2\mu 2\tau$
 - ► $h \rightarrow a_1 a_1 \rightarrow 2\mu 2b$
- ► Target different mass ranges of *a*₁.

Various searches \rightarrow various challenges

- Targets mass range between $5 15 \,\text{GeV}$.
 - ightarrow Large Lorentz boost of $a_1
 ightarrow$ decay products can overlap.
 - \rightarrow Special tau reconstruction techniques.

Approach:

 $h \rightarrow a_1 a_1 \rightarrow 4\tau$

1701.02032

8 6/

 $h
ightarrow a_1 a_1
ightarrow 4 au$

- Targets mass range between $5 15 \,\text{GeV}$.
 - ightarrow Large Lorentz boost of $a_1
 ightarrow$ decay products can overlap.
 - \rightarrow Special tau reconstruction techniques.

Approach:

Require 1 isolated muon for triggering.

8 TeV

1701.02032

► Targets mass range between 5 – 15 GeV.

- \rightarrow Large Lorentz boost of $a_1 \rightarrow$ decay products can overlap.
- \rightarrow Special tau reconstruction techniques.

Approach:

 $h
ightarrow a_1 a_1
ightarrow 4 au$

- Require 1 isolated muon for triggering.
- Require 1 τ_{μ} τ_X boosted object:

1701.02032

- $h
 ightarrow a_1 a_1
 ightarrow 4 au$
 - Targets mass range between $5 15 \,\text{GeV}$.
 - ightarrow Large Lorentz boost of $a_1
 ightarrow$ decay products can overlap.
 - \rightarrow Special tau reconstruction techniques.

Approach:

- Require 1 isolated muon for triggering.
- Require 1 τ_{μ} τ_X boosted object:
 - Reconstruction seeded by jets with muons.
 - Muon from jet removed.
 - Tau reconstruction performed on jet.
 - Successful reconstruction of a tau
 - \rightarrow Successful τ_{μ} τ_{X} reconstruction.

1701.02032

Searches for h(125) BSM properties at the CMS experiment

Search for h(125) decays to light Higgs bosons

$h ightarrow a_1 a_1 ightarrow 4 au$

- Targets mass range between $5 15 \,\text{GeV}$.
 - ightarrow Large Lorentz boost of $a_1
 ightarrow$ decay products can overlap.
 - \rightarrow Special tau reconstruction techniques.

Approach:

- Require 1 isolated muon for triggering.
- Require 1 τ_{μ} τ_X boosted object:
 - Reconstruction seeded by jets with muons.
 - Muon from jet removed.
 - Tau reconstruction performed on jet.
 - Successful reconstruction of a tau
 - ightarrow Successful au_{μ} au_X reconstruction.

8 TeV

1701.02032

- All measurements are compatible with SM expectations.
- ► Upper 95% CL limits on B(h → a₁a₁) go down to 17, 16, 4% for different decay modes.

Teresa Lenz

Search for anomalous self-coupling of h(125)

13 TeV

CMS-PAS-HIG-17-002

- ▶ Pair production of h(125): many possible final states
- Today: $h \rightarrow hh \rightarrow \tau \overline{\tau} b \overline{b}$

- Non-resonant pair production of SM Higgs bosons possible in the Standard Model (but very small).
- SM: Destructive interference of tree-level (λ_{hhh}) and fermionic loop contributions.
- SM prediction: $\sigma \approx 33$ fb.

Measurement sensitive to anomalous contributions to y_t and λ_{hhh}

Please see talk by Pietro Vischia for resonant $X \rightarrow hh$ production.

Searches for h(125) BSM properties at the CMS experiment

Search for anomalous self-coupling of h(125)

13 TeV

Pecularities:

- Mass reconstruction of $m_{b\overline{b}}$ and $m_{\tau\overline{\tau}}$.
- Separation from $t\overline{t}$ background.
- \rightarrow The "stransverse mass" $M_{\rm T2}$ is used as final discriminator.

- ► For $t\overline{t} \rightarrow b\overline{b}WW \rightarrow b\overline{b}\tau\nu_{\tau}\tau\nu_{\tau}$: upper bound at m_t .
- Signal can have larger values.

Search for anomalous self-coupling of h(125)

Results:

▶ Deviations from SM parametrized with: $k_{\lambda} = \lambda_{hhh} / \lambda_{hhh}^{SM}$

- \rightarrow Observed upper limit on $\sigma \cdot \mathcal{B}(hh \rightarrow b\overline{b}\tau\overline{\tau})$ is 28 times larger than in the SM.
- $\rightarrow\,$ No sign for new physics.

Teresa Lenz

13 TeV

CMS-PAS-HIG-17-002

 $k_{\rm t} = y_{\rm t}/y_{\star}^{\rm SM}$

Search for anomalous h(125) couplings to VV

- J = 0 nature of h(125) established in Run1.
- ► Still: Non-SM like couplings of the Higgs to vector bosons possible.
- \rightarrow 4 different anomalous couplings tested.
 - ▶ New to 8 TeV: Anomalous couplings also tested via production.

Approach:

- Full kinematic information is extracted with
 - ▶ Up to 13 observables as input per event (\$\vec{\alpha\$}\$):
 - Decay products: M^{leptons}, angles
 - Angles between decay frame and production axis, ...
 - Matrix element likelihood approach.
- \rightarrow Reduced set of informative observables (discriminants)

13 TeV

CMS-PAS-HIG-17-011

Search for anomalous h(125) couplings to VV

13 TeV

- ► Event observables $\vec{\Omega}$ compared to theoretical hypothesis α : $\mathcal{P}\left(\vec{\Omega}|\alpha\right)$.
- Ratios reduce systematic uncertainties.

- ► f_{a2} = 0: CP-even Higgs boson
- ▶ f_{a2} = 1: CP-odd Higgs boson
- $\rightarrow\,$ All observations are consistent with Standard Model expectations.

Conclusion

- ▶ BSM properties of h(125) can be tested in many different ways.
 - ightarrow Non-SM decays (lepton flavour violating decays, $h
 ightarrow a_1a_1$).
 - $\rightarrow\,$ Anomalous couplings to itself and other particles.
- Excess in LFV Higgs decays disappeared in full 2016 dataset.
- Upper limit of $\mathcal{B}(h \to \mu \tau) < 0.25\%$ is set.
- No hint for $h \rightarrow a_1 a_1$ decays.
- ► Updates with 13 TeV data are expected soon.
- ▶ No hint for anomalous couplings of h(125) to itself or vector bosons.

No non-SM properties of h(125) found, so far.

Teresa Lenz

Thank you

Backup

Teresa Lenz

Search for LFV h(125) decays: h ightarrow e au results

- ▶ Best fit: 0.30 ± 0.18%
- Upper 95% CL limit: $\mathcal{B}(h \rightarrow e \tau) < 0.61\%$

Teresa Lenz

Search for anomalous h(125) self-coupling: M_{T2}

Definition of M_{T2}:

$$M_{T2} = \min_{p_{T}^{\tau_{1}} + p_{T}^{\tau_{2}} = p_{T}^{\Sigma}} \{\max(m_{T}^{1}, m_{T}^{2})\}$$

with:

$$m_{T} = \sqrt{m_b^2 + m_{\mathsf{vis}\,\tau}^2 + 2(E_b E_\tau - p_{\mathsf{T}}^b p_{\mathsf{T}}^\tau)}$$
$$p_{\mathsf{T}}^{\Sigma} = p_{\mathsf{T}}^{\mathsf{vis}\,\tau_1} + p_{\mathsf{T}}^{\mathsf{vis}\,\tau_2} + p_{\mathsf{T}}^{\mathsf{miss}}$$

 $\rightarrow\,$ Minimization over various $p_{\rm T}^{\tau_1}$ and $p_{\rm T}^{\tau_2}$ hypotheses.

Search for anomalous h(125) self-coupling: $hh \rightarrow b\overline{b}\ell\nu\ell\nu$

CMS-PAS-HIG-17-006

• Observed upper limit on $\sigma \cdot \mathcal{B}(hh \rightarrow b\overline{b}\ell\nu\ell\nu)$ is 79 times larger than in the SM.

Teresa Lenz

Search for anomalous h(125) couplings to VV: Results

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.30^{+0.19}_{-0.21}$ [-0.45, 0.66]	$0.000^{+0.017}_{-0.017}$ [-0.32, 0.32]
$f_{a2}\cos(\phi_{a2})$	$0.04^{+0.19}_{-0.04}$ $[-0.69, -0.64] \cup [-0.04, 0.64]$	$0.000^{+0.015}_{-0.014} \ [-0.08, 0.29]$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00^{+0.06}_{-0.33} \left[-0.92, 0.15 ight]$	$0.000^{+0.014}_{-0.014} \ [-0.79, 0.15]$
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.16^{+0.36}_{-0.25} \ [-0.43, 0.80]$	$0.000^{+0.020}_{-0.024} \ [-0.49, 0.80]$

All observed values in agreement with the Standard Model.