Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

Measurements of jet production in CMS The 5th Annual Conference on Large Hadron Collider Physics Shanghai 2017

Patrick L.S. Connor

on behalf of the CMS collaboration

Deutsches Elektronen-Synchrotron

15 May 2017

Introduction

LHCP2017

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

- $\hfill \bullet$ Review the latest precision measurements in pp collisions:
 - inclusive jet production (8 and 13 TeV) [1, 2]
 - multijet production (8 TeV) [3]
 - triple differential cross section (8 TeV) [4]
 - azimuthal correlations (8 and 13 TeV) [5, 6]
 - New constraints on PDFs [1, 4]
- Various measurements of α_S [1, 3, 4]

Introduction

LHCP2017

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

$\hfill \bullet$ Review the latest precision measurements in pp collisions:

- inclusive jet production (8 and 13 TeV) [1, 2]
- multijet production (8 TeV) [3]
- triple differential cross section (8 TeV) [4]
- azimuthal correlations (8 and 13 TeV) [5, 6]
- New constraints on PDFs [1, 4]
- Various measurements of α_S [1, 3, 4]

The anti- k_T algorithm is used to reconstruct the jets [7], with cone radius R = 0.4 or R = 0.7.

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

CMS in a nutschell

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

- Summary References
- Back-up

Inclusive jet analysis

- Measurements at 8 and 13 TeV
- Two cone size radii for 13 TeV
- The TeV scale is now reached!
- Large rapidity coverage

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T \; \mathrm{d}y} = \frac{1}{\epsilon \mathcal{L}_{\mathsf{int}}^{\mathsf{eff}}} \frac{N_{\mathsf{jets}}}{\Delta p_T \Delta |y|}$

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

- Comparison to NLO parton-level calculation, including EWK and NP corrections.
- JES uncertainties at the order of the percent in the central region
 - \longrightarrow this is an achievement!
- Agreement with measurement on two orders of magnitude!
- New constraints on PDFs together with fit of α_S
 - \longrightarrow see later in the talk...

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

- P8+CUETM1 (LO) agrees in shape in |y| < 1.5
- Hpp+CUETS1 (LO) agrees in shape in all rapidity bins
- PowHeg+P8 (NLO) shows good agreement

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

Inclusive jet analysis, 13 TeV 71 pb⁻¹ (13 TeV) 44 pb⁻¹ (13 TeV) 2.5 Ratio to PH+P8 CUETM1 Data Ratio to PH+P8 CUETM — Data CMS CMS 3 PH+P8 CUETS1-CTEQ6L1 PH+P8 CUETS1-CTEQ6L1 PH+P8 CUETS1-HERAPDE PH+P8 CUETS1-HERAPDE 2 Anti-k, R = 0.7 Anti-k. R = 0.7 25 P8 CUETM1 P8 CUETM1 |y| < 0.5 3.2 < |y| < 4.7 HDD CUETS1 Hpp CUETS1 1.5 Exp. uncert. Exp. uncert. .5 0.5 0.5 200 300 1000 2000 120 140 160 180 200 220 Jet p_ (GeV) Jet p_ (GeV) 71 pb⁻¹ (13 TeV) 44 pb⁻¹ (13 TeV) 2.5 Ratio to PH+P8 CUETM1 Ratio to PH+P8 CUETM1 Data Data CMS CMS PH+P8 CUETS1-CTEQ6I 1 PH+P8 CUETS1-CTEQ6L1 PH+P8 CUETS1-HERAPDE PH+P8 CUETS1-HERAPDE 2 Anti-k, R = 0.4 Anti-k. R = 0.4 2 P8 CUETM1 P8 CUETM1 |y| < 0.5 3.2 < IVI < 4.7 Hpp CUETS1 Hpp CUETS1 1.5 Exp. uncert Exp. uncert .5 0.5 0.5Ē Jet p_T (GeV) 200 300 1000 140 160 180 220 Jet p_ (GeV)

- P8+CUETM1 (LO) agrees in shape in |y| < 1.5
- Hpp+CUETS1 (LO) agrees in shape in all rapidity bins
- PowHeg+P8 (NLO) shows good agreement
- \rightarrow no significant slope!

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis

Multijet analysis

Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

Multijet analysis, 8 TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(H_{T,2}/2)} = \frac{1}{\epsilon \mathcal{L}_{\mathsf{int}}^{\mathsf{eff}}} \frac{N_{\mathsf{events}}}{\Delta(H_{T,2}/2)}$$

•
$$H_{T,n} = \sum_{i=1}^{n} p_{T,i}$$

•
$$\alpha_S$$
 can be safely extracted
from $R_{mn} = \frac{\sigma_{m-jet}}{\sigma_{n-jet}} \propto \alpha_S^{m-n}$
 \longrightarrow see later in the talk...

•
$$p_T > 150 \, \text{GeV}$$
 and $|y| < 2.5$

Patrick Connor

Introduction

Latest analyses

Inclusive iet analysis

Multiiet analysis

Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summarv References Back-up

Multijet analysis, 8 TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(H_{T,2}/2)} = \frac{1}{\epsilon \mathcal{L}_{\mathsf{int}}^{\mathsf{eff}}} \frac{N_{\mathsf{events}}}{\Delta(H_{T,2}/2)}$$

•
$$H_{T,n} = \sum_{i=1}^{n} p_{T,i}$$

CMS Preliminary

IVI < 2.5

anti-k. R = 0.7

400 500 600

2.5

1.5

0.5

Ratios to NLO (CT10)

 α_S can be safely extracted from $R_{mn} = \frac{\sigma_{m-jet}}{\sigma_{n-jet}} \propto \alpha_S^{m-n}$ \rightarrow see later in the talk...

•
$$p_T > 150 \,\mathrm{GeV}$$
 and $|y| < 2.5$

n, ≥ 2

ASTW2008

Exp. Uncertainty

7 Theory Uncertainty

1000

NNPDF2 3

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis

Triple differential cross section Azimuthal

Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

Triple differential cross section 8 TeV

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis

Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

Triple differential cross section 8 TeV

This measurement is very well suited to extract PDFs and α_S : central region most suited for α_S extraction at high energy scales boosted region high-x region of PDFs can be better constrained large rapidity separation PDF and detector effects can be better disentangled

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis

Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

19.7 fb=1 (8 TeV) CMS $0 \le y_0 < 1$ $2 \le y^* < 3$ 1.4 Exp. Unc Theo, Unc. 0.6 CT14 - NLOSEWSNP MMHT 2014 - NLOSEWANP ABM11 - NLOGEWONP 200 300 500 р_{т, жир} / GeV 19.7 fb=1 (8 TeV) CMS + Exp Linc CT14 - NLOSEWSNE MMHT 2014 - NLOREWRNP pt, avg / GeV 19.7 fb-1 (8 TeV) CMS $0 \le y_0 < 1$ $0 \le y' < 1$ NLO®EW®NF NPDF Data Exp Linc Theo, Linc 80.6 CT14 - NLOREWRNF MMHT 2014 - NLOBFWANF ADM11 - NIGETWEND 300 PT and / GeV

Triple differential cross section

- Good agreement with NLO calculation with NNPDF 3.0.
- Good agreement also with CT14 and MMHT2014.
- However AMB11 PDF underestimates the predictions.

- The more extra radiations, the less correlated the two leading jets \rightarrow good test for matching ME+PS.
- At 8 and 13 TeV, measurement of azimuthal correlation between the two leading jets $\Delta \phi_{12}$ (but different cone sizes).
- At 13 TeV. additional measurement of minimum azimuthal correlations of the 2nd with the 3rd or 4th jet: $\Delta \phi_{2i}^{\min}$.

10/17

Patrick

Latest

analyses

analysis

Multiiet

analysis

differential

Azimuthal

Triple

PDFs

Strong

coupling

Summarv

Back-up

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

Azimuthal correlations at 8 TeV

- CMS 19.7 fb⁻¹ (8 TeV) Exp. uncertainty Pythia6 72* MadGraph + Pythia6 Z2* Herwig++ Pythia8 CLIFTM Powheg + Pythia8 CUETS1 p_max > 1100 GeV p_ms > 1100 GeV Ratio to data 900 < p^{max} < 1100 GeV 900 < p^{max} < 1100 GeV 700 < p^{max} < 900 GeV 700 < p^{max} < 900 GeV ----500 < p^{max} < 700 GeV 500 < p____ < 700 GeV ********* 400 < p_____ < 500 GeV 400 < p_____ < 500 GeV 300 < p____ < 400 GeV 300 < p_max < 400 GeV ·******** 200 < p_____ < 300 GeV 200 < p_max < 300 GeV $\Delta \phi_{dijet}$ (rad) ∆¢__(rad
- For event generators, best agreement is given by tree-level multiparton generator MadGraph+Pythia 6 (RHS).
- Among the LO dijet event generators, Pythia 8 agrees best, while Herwig++ overshoots most.
- Also fixed-order NLO parton-level calculation in back-up.

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

12/17

Azimuthal correlations

- MadGraph+Pythia 8 agrees best; Herwig++ overshoots again.
- Best agreement is given by Herwig7.
 - PH-2J gives better results when matched with P8 than Herwig++.
- PH-3J+P8 is generally lower than PH2J+P8.

Patrick Connor

CMS

Data recorded: Sat Jun 4 04:24:59 2016 CES

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal

correlations PDFs

Strong coupling

- Summary References
- Back-up

13/17

Azimuthal correlations 13 TeV, $\Delta \phi_{12}^{3-{\rm jet}}$

- Spectrum gets flatter, as dijet events are no more included.
- More sensitive to parton shower.

1 $p_T = 709 \,\text{GeV}, \, y = -0.396, \, \phi = 1.544$

2 $p_T = 709 \,\text{GeV}, \, y = 0.343, \, \phi = -2.655$

3 $p_T = 703 \,\text{GeV}, \, y = -0.304, \, \phi = -0.561$

• Conclusions are similar as for 2-jet case.

Patrick Connor

Introduction

CMS

CMS Experiment at LHC, CERN Data recorded: Sun May 15 06:28:58 2016 CER

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal

correlations

PDFs

- Strong coupling
- Summary References
- Back-up

14/17

Azimuthal correlations 13 TeV, $\Delta\phi_{12}^{4-\rm jet}$

3 $p_T = 216 \text{ GeV}, \ y = 0.375, \ \phi = 1.977$ **4** $p_T = 196 \text{ GeV}, \ y = -0.823, \ \phi = -1.199$

1 $p_T = 234 \,\text{GeV}, \, y = -0.714, \, \phi = -2.820$

2 $p_T = 224 \text{ GeV}, y = 1.477, \phi = 0.349$

- Spectrum gets even flatter.
- Even more sensitive to parton shower.
- And conclusions are similar as for 2- and 3-jet cases.

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

PDFs from jet measurements

Fit combines HERA and CMS data:

1 inclusive jet at 8 TeV

2 dijet at 8 TeV

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summary References

Back-up

inclusive jet least square minimisation on $p_T(y)$ spectrum using NLO parton-level predictions multijet id. on $R_{32} = \sigma_{3-jet}/\sigma_{2-jet}$ triple differential cross section together with PDF fit

Strong coupling

method	$\alpha_S(M_Z)$	scale unc.	exp. unc.	PDF unc.	total unc.
incl. jet	0.1164	$+0.0053 \\ -0.0028$	$+0.0015 \\ -0.0016$	$+0.0025 \\ -0.0029$	$+0.0093 \\ -0.0073$
multijet	0.1150	$^{+0.0050}_{-0.0000}$	± 0.0025	± 0.0013	$^{+0.0088}_{-0.0038}$
trip. diff. σ	0.1194	$^{+0.0031}_{-0.0019}$	$+0.0015 \\ -0.0015$	$+0.0004 \\ -0.0006$	$+0.0050 \\ -0.0040$

Patrick Connor

Introduction

Latest analyses

Inclusive iet analysis Multiiet analysis Triple differential cross section Azimuthal correlations

PDFs

Strong coupling

Summarv References

Back-up

inclusive jet least square minimisation on $p_T(y)$ spectrum using NLO parton-level predictions multijet id. on $R_{32} = \sigma_{3-jet}/\sigma_{2-jet}$ triple differential cross section together with PDF fit

Strong coupling

-0.0015

-0.0006

-0.0040

[8]

-0.0019PDG \rightarrow all compatible with world average α_{S}^{PI} $= 0.1181 \pm 0.0011!$

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

- We presented the latest results on jet measurements at 8 and 13 TeV.
- The TeV scale is reached in the p_T and H_T spectra, and a large rapidity range is covered, opening up new regions of the phase space.
- Detailed comparisons with LO/NLO+PS and NLO parton-level calculations are available.
 - The NLO parton-level calculations are in very good agreement for R=0.7 in all the analyses.
 - Among the MC event generators, PowHeg gives the best description of the inclusive jet, and MadGraph+Pythia and Herwig7 give nice agreement in the azimuthal correlations.
- Gluons PDFs can better be constrained, especially for high x values.
- We have various measurements of α_S .

Patrick Connor

Introduction

Latest analyses

Inclusive jet analysis Multijet analysis Triple differential cross section Azimuthal correlations

PDFs

- Strong coupling
- Summary References
- Back-up

17/17

• We presented the latest results on jet measurements at 8 and 13 TeV.

Summary

- The TeV scale is reached in the p_T and H_T spectra, and a large rapidity range is covered, opening up new regions of the phase space.
- Detailed comparisons with LO/NLO+PS and NLO parton-level calculations are available.
 - The NLO parton-level calculations are in very good agreement for R=0.7 in all the analyses.
 - Among the MC event generators, PowHeg gives the best description of the inclusive jet, and MadGraph+Pythia and Herwig7 give nice agreement in the azimuthal correlations.
- Gluons PDFs can better be constrained, especially for high x values.
- We have various measurements of α_S .

Thanks a lot!

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Vardan Khachatryan et al.

Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $\sqrt{s} = 8$ TeV and cross section ratios to 2.76 and 7 TeV. JHEP, 03:156, 2017.

Vardan Khachatryan et al.

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s} = 13$ TeV.

References I

Eur. Phys. J., C76(8):451, 2016.

CMS Collaboration.

Determination of the strong coupling constant from the measurement of inclusive multijet event cross sections in pp collisions at $\sqrt{s} = 8$ TeV. Technical Report CMS-PAS-SMP-16-008. 2017.

CMS Collaboration.

Measurement of Triple-Differential Dijet Cross Sections at $\sqrt{s} = 8$ TeV with the CMS Detector and Constraints on Parton Distribution Functions. Technical Report CMS-PAS-SMP-16-011, 2016.

Vardan Khachatryan et al.

Measurement of dijet azimuthal decorrelation in pp collisions at $\sqrt{s} = 8$ TeV. *Eur. Phys. J.*, C76(10):536, 2016.

CMS Collaboration.

Measurements of inclusive 2-jet, 3-jet and 4-jet azimuthal correlations in pp collisions at $\sqrt{s} = 13$ TeV. Technical Report CMS-PAS-SMP-16-014, 2017.

Patrick Connor

References II

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Matteo Cacciari, Gavin P. Salam, and Gregory Soyez.

The Anti-k(t) jet clustering algorithm. *JHEP*, 04:063, 2008.

C. Patrignani et al.

Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Patrick Connor

References

Back-up

Inclusive jet analysis Triple

differential cross section Azimuthal correlations

Agreement is better for large than small cone sizes \rightarrow missing PS and soft-gluon resummation in fixed order calculations

21/17

Inclusive jet analysis, 13 TeV

Patrick Connor

References

Back-up

Inclusive jet analysis

Triple differential cross section Azimuthal correlations

Triple differential cross section 8 TeV

- Herwig 7 (NLO) shows better agreement in central region
- while Pythia 8 + PS (LO) shows better agreement in forward region

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Azimuthal correlations at 8 TeV

- Fixed-order calculations agree with data except from $5\pi/6$ for the highest $p_T^{\rm max}$ region
- Discontinuity comes from matching LO and NLO.

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Azimuthal correlations 13 TeV, $\Delta\phi_{12}$

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Azimuthal correlations 13 TeV, $\Delta\phi_{12}$

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Azimuthal correlations

- 3-jet (4-jet) distributions have maximum at 2π/3 (π/2)
 → typical, as shown in previous event displays
- Little change at 0.4 is related cone size R = 0.4.

DESY

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

Azimuthal correlations 13 TeV, $\Delta \phi_{2i}^{\min}$

- MG+P8 and Herwig++ give reasonable description but P8 fails.
- PH-2J has best agreement.
- PH-3J+P8 suffers from statistical accuracy.
- Feature at low values in Herwig7 is related to some non-physical cut.

Patrick Connor

References

Back-up

Inclusive jet analysis Triple differential cross section Azimuthal correlations

- Here however P8 and MG+P8 are both off.
- Herwig7 exhibits large deviations.
- Other conclusions are the same.