

Search for supersymmetry with τ leptons in the CMS experiment

<u>Ilya Bobovnikov</u>, Alexis Kalogeropoulos, Isabell Melzer-Pellmann, Alexei Raspereza

DPG, Münster, 27-31 March 2017

27 March 2017

Ilya Bobovnikov (DPG)

2

Models and topologies

Channel	Signature	\mathcal{BR}
0- l	$2\tau_h + \not E_T$	$0.65^2 = 0.42$
$1-\ell$	$\tau_{\ell}\tau_{h}+\not E_{T}$	$2 \times (0.35 \cdot 0.65) = 0.46$
$2-\ell$	$2\tau_{\ell} + \not E_T$	$0.35^2 = 0.12$

Experimental signature

- Missing transverse energy depends on model parameters

- Small number of jets and no b-tagged jets

Backgrounds estimations

5

Corrections

CMS

- Trigger and Lepton scale factors (efficiencies have been obtained with Tag & Probe method from Z → µµ and Z → ee selection)
- Muon and Electrons Tau fake rate: these are obtained from the TAU POG.
- Tau fake rate: Measuring the jets → tau fake from a Wjets enriched CR Applying nominal preselection of μ-τ
- Top p_τ reweighting: to improve modelling of the top quark p_τ spectrum
- **Z recoil corrections**: corrections to the the parallel and perpendicular parts of the $E_{T^{miss}}$ (extracted from $Z \rightarrow \mu\mu$ selection, applied to Z-jets and W-jets events)
- **Z** p_T corrections: applied to describe the disagreement of data and simulation at high Z p_T

MuonID_Iso0p15

Search variables

- E_T^{miss} missing transverse energy
- M_{T2Lester} modification of the commonly used M_{T2} (Very useful in asymmetric case, $M_{\text{T2Lester}} \ge M_{\text{T2}}$) (arXiv : 1411.4312) $M_{\text{T2}}^2 = \min_{\vec{k}_T + \vec{l}_T = \text{tot miss } \vec{p}_T} \left\{ \max \left[M_T^2(\text{chain 1}), M_T^2(\text{chain 2}) \right] \right\} \le m_Z^2$

• D_{ζ} – Discriminant used in legacy Higgs searches

 $\begin{aligned} D_{\zeta} &= P_{\zeta}^{\text{miss}} - \alpha P_{\zeta}^{\text{vis}} \\ P_{\zeta}^{\text{miss}} &= \vec{p}_{\text{T}}^{\text{miss}} \cdot \vec{\zeta} \text{ and } P_{\zeta}^{\text{vis}} = (\vec{p}_{\text{T}}^{\ell_1} + \vec{p}_{\text{T}}^{\ell_2}) \cdot \vec{\zeta} \end{aligned}$

 ζ – bisector between the direction of the electron and that of the muon α = 0.85 (optimized value)

Control plots (μ-τ)

after baseline selection

Agreement between data and MC looks good

• Form 1D template (58 bins) from main variables

27 March 2017

Ilya Bobovnikov (DPG)

 τ/ν_{τ}

 $\tilde{\chi}_1^0$

- Search for SUSY in events with τ leptons in the final state with 13 TeV data taken in 2016
- Various background estimation techniques
- Signal region optimization
- Results are interpreted in terms of simplified SUSY model and expected exclusion limits are calculated
- Plan to improve selection technique τ to be sensitive to direct $\tilde{\tau}$ production

Stay tuned!

- ME 1

The only stop seen at LHC \$0 far

27 March 2017

Ilya Bobovnikov (DPG)

11

Event selection

Triggers

Channel	Triggers
μ-τ	HLT_IsoMu24
е-т	Ele25_eta2p1_WPTight
µ-e	Mu23_TrIsoVVL_Ele12_CaloIdL_TrackIdl_IsoVL Mu8_TrIsoVVL_Ele23_CaloIdL_TrackIdI_IsoVL Mu23_TrIsoVVL_Ele12_CaloIdL_TrackIdI_IsoVL_DZ Mu8_TrIsoVVL_Ele23_CaloIdL_TrackIdI_IsoVL_DZ

Preselection cuts

	muons(μ-τ)	electrons(e-τ)	taus	muons (µ-e)	electrons(µ-e)
Id	Medium	non-trigMVA	MVATight	medium	non-trigMVA
P _T >(GeV)	25	26	20	10(24)	24(13)
η <	2.4	2.1	2.3	2.4	2.5
dxy <(cm)	0.045	0.045	-	0.045	0.045
d _z <(cm)	0.2	0.2	0.2	0.2	0.2
Rellso <	0.15	0.1	-	0.15	0.1
Pair	OS with 0.3 < ΔR < 3.5			OS with $\Delta R > 0.3$	

Baseline selection

- 3rd lepton veto and dilepton veto
- N_{jet} \leq 1 and n_{b-tag} = 0
- 20 < MT < 60 GeV or MT > 120 GeV (μτ, eτ)
 (to reject Wjets bkg.)
- $M_{\it u} < 30 \; GeV \; and \; 100 \; GeV < M_{\it u} < 250 \; GeV \; (e\mu)$

(to reject DY bkg)

Signal region selection

- $\Delta |\eta|_{u} < 2, M_{u} > 20 \text{ GeV}$
- M_{Tsum} > 30 GeV
- p_T(*l*) < 200 GeV (eμ)</p>

Additional cuts for 1 jet category

- $\Delta |\eta| (J_0, l) < 3$
- ΔR (J₀,τ) < 4 (μτ, eτ)</p>

MET recoil corrections

Z+Jets, Z $\rightarrow \mu\mu$ events

 \Rightarrow no neutrinos

 $\vec{U} = \vec{E}_{\rm T}^{\rm mis} = -\vec{H}_{\rm T} - \vec{p}_{\rm T,\mu\mu}$

From Francesco Costanza and Alexei Raspereza (AN-16-274)

U₁ and U₂ are studied in dependence of Zp_T and jet multiplicity. The method attempts to precisely reproduce shapes of the hadronic recoil distributions in data (corrects both response and Resolution)

 J_2

 $\vec{p}_{\mathrm{T,Z}}$

Zp_T correction

Z (mass, p_{τ}) corrections from Adinda De Wit and Rebecca Lane DY MC (AN-16-274)

MC $Z \rightarrow \tau \tau$ process does not model the data well at high Z p_T and high invariant mass. From $Z \rightarrow \mu \mu$ weights are derived such that the overall normalization is preserved.

(a) Without Z reweighting

(b) With Z reweighting

Jets→ tau fake rate measurements

- Measuring the jets \rightarrow tau fake from a Wjets enriched CR
- Applying nominal preselection of μ - τ
- Additional cuts to to reject bkg and increase Wjets purity
- ratio of "Tight"/"Loose" is formed
 - "Loose" is loosely selected τ candidates
 - "Tight" is τ candidates passing the nominal τ ID criteria

Signal regions

CMS	

$E_{\rm T}^{\rm miss}$	M _{T2Lester}	Dζ	SR $(i + 29 \times n_{jet})$	Category
		<-150	1	
	<40	>-150 & <-100	2	
		>-100 & <0	3	
<40		>0	4	
		<-150	5	
	$>\!40$	>-150	6	
		<-150	7	
	< 10	>-150 & <-100	8	
	<40	>-100 & <50	9	
>10 fr <80		>50	10	
>40 & <00		<-150	11	
	>40 & $<\!80$	>-150 & <-100	12	
		>-100	13	
	>80	>-500	14	
	<10	<-100	15	
	0±V	>-100	16	~ 0.1 Late
		<-150	17	~ 0,1 jets
>80 & <120	$>40 \& <\!\!80$	>-150 & <-100	18	
		>-100	19	
	>80 & <120	>-500	20	
	>120	>-500	21	
		<-150	22	
	<40	>-150 & <-100	23	
		>-100	24	
		<-150	25	
>120	$>\!\!40$ & $<\!\!80$	>-150 <-100	26	
~		>-100	27	
	>80 & <120	>-500	28	
	>120	>-500	29	1

Ilya Bobovnikov (DPG)