First 13 TeV search for new heavy spin-0 resonances decaying into top quarks at CMS

<u>A. Anuar</u>, K. Beernaert, A. Grohsjean, C. Schwanenberger, N. Stefanov, G. Van Onsem

28 March 2017

Introduction

- Search for resonant ϕ decaying to $t\bar{t}$
 - Consider both pseudoscalar A and scalar H
 - A is of particular interest as BR(A \rightarrow $t\bar{t}$) \sim 1; A \rightarrow VV forbidden by CP conservation
 - Interference with SM taken into account for the first time in CMS
 - Coupling between ϕ and top quark denoted with the letter $g_{\phi t \bar{t}}$

Diagrams from arXiv:1511.05584

Introduction

- Search for resonant ϕ decaying to $t\bar{t}$
 - Consider both pseudoscalar A and scalar H
 - A is of particular interest as BR(A \rightarrow t \bar{t}) \sim 1; A \rightarrow VV forbidden by CP conservation
 - Interference with SM taken into account for the first time in CMS
 - Coupling between ϕ and top quark denoted with the letter ${\cal g}_{\phi t {ar t}}$
- \bullet Significant peak-dip structure in $m_{t\bar{t}}$ spectrum due to interference
 - No resonance peak in some cases
 - Exact structure depends on parity, m_ϕ and Γ_ϕ

Strateov

Analysis strategy

- Search performed over 2016 CMS data totalling 35.7 fb⁻¹
- Focus on the dileptonic channel
 - Both W bosons in top decays decay leptonically, with $\ell = e$ or μ
 - Complimentary semileptonic search not covered here
- Generated signal points:
 - 2D $[m_{\phi}, \Gamma_{\phi}]$ array in (400, 500, 600, 750) GeV and (2.5%, 5%, 10%, 25%, 50%) m_{ϕ}
 - $g_{\phi t\bar{t}}$ assumed to be 1
- Set limits on $g^2_{dt\bar{t}}$ through shape analysis on $m_{t\bar{t}}$ spectrum
- Increased sensitivity by exploiting other observables on top of $m_{t\bar{t}}$

Selection

Event selection

- 2 opposite-sign isolated leptons: $\rho_T > 25$, 20 GeV, $|\eta| < 2.4$
 - $m_{\ell\ell} > 20$ GeV and $\Delta R > 0.4$ from all jets
 - In same-flavor channels: $|m_{\ell\ell} m_Z| > 15$ GeV and $\mathbb{E}_T > 40$ GeV
 - Events with additional leptons are vetoed
- 2 leading (additional) jets: $\rho_T > 30$ (20) GeV, $|\eta| < 2.4$
 - At least one is b-tagged
- Corrections to account for data-simulation differences
 - Object-based scale factors
 - Pile-up reweighting

tt kinematic reconstruction

 \bullet Missing neutrinos in the event $\rightarrow t\bar{t}$ system is underconstrained

tt kinematic reconstruction

- \bullet Missing neutrinos in the event $\rightarrow t\bar{t}$ system is underconstrained
- Reconstruct the $\ensuremath{t\bar{t}}$ system with an analytical routine (arXiv:hep-ph/0603011)

tt kinematic reconstruction

- \bullet Missing neutrinos in the event $\rightarrow t\bar{t}$ system is underconstrained
- Reconstruct the tī system with an analytical routine (arXiv:hep-ph/0603011)
 - Impose constraints based on known top and W masses

 - Resulting polynomial in ρ_{i}^{ν} solvable leading to full $t\bar{t}$ system kinematics

tt kinematic reconstruction

- \bullet Missing neutrinos in the event $\rightarrow t\bar{t}$ system is underconstrained
- Reconstruct the tī system with an analytical routine (arXiv:hep-ph/0603011)
 - Impose constraints based on known top and W masses

 - Resulting polynomial in ρ^ν_i solvable leading to full tt system kinematics
- Increase efficiency by solving for all lepton-jet combinations
- Account for detector effects by random object smearings
- Procedure described in detail in CMS-PAS-TOP-16-011

Systematics

Systematic effects on $m_{t\bar{t}}$

 Crucial to evaluate systematics affecting m_{tt} shape

 $m_{t\bar{t}}$ distribution obtained with the kinematic reconstruction routine

A. Anuar (DESY)

Systematics

Systematic effects on $m_{t\bar{t}}$

- \bullet Crucial to evaluate systematics affecting $m_{t\bar{t}}$ shape
- Partial list of considered systematic sources:
 - Jet energy scale

Solid: up variation; dashed: down variation

Systematics

Systematic effects on $m_{t\bar{t}}$

- Crucial to evaluate systematics affecting m_{tt} shape
- Partial list of considered systematic sources:
 - Jet energy scale
 - b-tag

Solid: up variation; dashed: down variation

Systematic effects on $m_{t\bar{t}}$

- \bullet Crucial to evaluate systematics affecting $m_{t\bar{t}}$ shape
- Partial list of considered systematic sources:
 - Jet energy scale
 - b-tag
 - ME fact. & ren. scale

Solid: up variation; dashed: down variation

Limits with m_{tī}

Limits

Limits with m_{tt}

- Limits evaluated with m_{tt} templates
- MC-estimated background processes:
 - tī (+ V)
 - Single top
 - V + jets
 - Diboson
- DY yield estimated from data

Limits with $m_{t\bar{t}}$

- Limits evaluated with m_{tt} templates
- MC-estimated background processes:
 - tt (+ V)
 - Single top
 - V + jets
 - Diboson
- DY yield estimated from data
- Limits on A(2.5%) on the right

Limits with $m_{t\bar{t}}$

- Limits evaluated with m_{tt} templates
- MC-estimated background processes:
 - tī (+ V)
 - Single top
 - V + jets
 - Diboson
- DY yield estimated from data
- Limits on H(2.5%) on the right

Spin correlation variables

- Top quark spin information is inherited by the charged leptons
- Exploit this fact to probe the spin of the tt mother
 - Different ϕ and gluon templates
 - Also sensitive to A vs H

Spin correlation variables

- Top quark spin information is inherited by the charged leptons
- Exploit this fact to probe the spin of the tt mother
 - Different ϕ and gluon templates
 - Also sensitive to A vs H
- Identified 2 observables with highest sensitivity

Spin correlation variables

- Top quark spin information is inherited by the charged leptons
- Exploit this fact to probe the spin of the tt mother
 - Different ϕ and gluon templates 0.12
 - Also sensitive to A vs H
- Identified 2 observables with highest sensitivity

• $\Delta \phi_{lab}$

Distributions are normalized to unit area and resonance-only for A/H

Variables

Spin correlation variables

- Top quark spin information is inherited by the charged leptons
- Exploit this fact to probe the spin of the tt mother
 - Different ϕ and gluon templates
 - Also sensitive to A vs H
- Identified 2 observables with highest sensitivity
 - $\Delta \phi_{lab}$

• C_{hel}

Distributions are normalized to unit area and resonance-only for A/H

2D limits

• Set limits with the 2D template of $m_{t\bar{t}}$ vs c_{hel}

- Set limits with the 2D template of $m_{t\bar{t}}$ vs c_{hel}
- Limits on A(2.5%) on the right

- Set limits with the 2D template of $m_{t\bar{t}}$ vs c_{hel}
- Limits on A(2.5%) on the right
- Significant improvement vs $m_{t\bar{t}}$ -only limits

- Set limits with the 2D template of $m_{t\bar{t}}$ vs c_{hel}
- Significant improvement vs m_{tt}
 -only limits
- Similar effect seen for H(2.5%)

- Set limits with the 2D template of $m_{t\bar{t}}$ vs c_{hel}
- Significant improvement vs m_{tt}
 -only limits
- Similar effect seen for H(2.5%)

- An overview of the search for resonant spin-0 ϕ production decaying to $t\bar{t}$ has been presented
- \bullet Emphasis on the increased sensitivity by exploiting spin correlation observables on top of the $m_{t\bar{t}}$ spectrum

- \bullet An overview of the search for resonant spin-0 ϕ production decaying to $t\bar{t}$ has been presented
- \bullet Emphasis on the increased sensitivity by exploiting spin correlation observables on top of the $m_{t\bar{t}}$ spectrum

Thanks for your attention!

Any questions?

Backup slides

A(5%) limits

A(10%) limits

A(25%) limits

A(50%) limits

H(5%) limits

H(10%) limits

H(25%) limits

H(50%) limits

