

Differential cross sections for $\ensuremath{t\bar{t}}$ production at 8 and 13 TeV by CMS

Mykola Savitskyi (DESY)

Why measure differentially?

- Precise understanding of top quark distributions is crucial:
 - Precision tests of perturbative QCD for top quark production at different phase space regions
 - > Theory predictions and models need to be tuned and tested with measurements:
 - → potential to reduce signal modelling systematics
 - > Extract/use for PDF fits
 - > Enhance sensitivity to New Physics
 - > Background for Higgs, rare processes and many BSM searches
- Large tt
 samples at the LHC allow measuring σ(tt

 as a function of many kinematic observables

General analysis strategy

In this talk latest selected results by CMS: at 8 TeV \rightarrow [arXiv:1505.04480] (dilepton & I+jets) at 13 TeV \rightarrow PAS TOP-15-010 (dilepton)

- Goal: measure σ(tt̄) as a function of top quark, tt̄ system, b-jet, lepton, lepton pair and event-level observables
- Main analysis ingredients
 - > Event selection
 - > tt kinematic reconstruction
 - > Bin-wise cross section measurement
 - > <u>Unfolding</u>: correct for detector effects & acceptance to parton or particle level after background subtraction
- Differential tt cross sections
 - Normalize to in-situ measured σ(tt): mostly shape uncertainties contribute

Event selection

Lepton+jets:

- Exactly 1 high-p_T isolated lepton (e or μ)
 - $p_T > 33 \text{ GeV}, |\eta| < 2.1$
- ≥4 jets: p₁ > 30 GeV, |η| < 2.4
- ≥ 2 b-tagged jets

W^{+} W^{+

Dileptons:

- > 2 OS, high- p_{τ} isolated leptons (ee, $\mu\mu$, μ e)
 - $p_T > 20 \text{ GeV}, |\eta| < 2.4$
- **QCD veto**: m_∥ > 20 GeV
- **2 jets**: $p_{T} > 30 \text{ GeV}$, $|\eta| < 2.4$
- ≥ 1 b-tagged jets
- ee, μμ channels: E_T^{miss} > 40 GeV

Z veto: $|m_z - m_{\parallel}| > 15 \text{ GeV}$

In addition: kinematic reconstruction of tt system

M. Savitskyi (DESY)

Kinematic distributions in I+jets at 8 TeV

- Very pure tt signal after full event selection & kinematic reconstruction (~80%)
- Dominant backgrounds: tt other, single top, W+jets
- tt other includes all nonl+jets decays
- Reference tt prediction: MadGraph+Pythia6
- Softer top p_T spectrum in data than one determined from simulation (same for dilepton)

Kinematic distributions in dileptons at 8 TeV

- Very pure tt signal after full event selection & kinematic reconstruction (~80%)
- Dominant backgrounds: tt other, single top, Z+jets
- tt other includes all nondilepton decays
- Reference tt prediction:
 MadGraph+Pythia6
- Lepton and jet p_T spectra feature similar behavior as in top p_T (same for I+jets)

Kinematic distributions in dileptons at 13 TeV

Using first $L = 42 \text{ pb}^{-1}$ of 13 TeV data

- Very pure **tt signal** after full event selection & kinematic reconstruction (~80%)
- Dominant backgrounds: tt other, single top, Z+jets
- tt other includes all nondilepton decays
- Reference tt prediction: Powheg+Pythia8
- Dominated by statistical uncertainty

In general, good data-to-MC agreement

Physics at the Terascale, 18.11.15

≥5

 $\mathsf{N}_{\mathsf{jets}}$

300

250

p_tt [GeV]

Normalized differential cross section

Binning

Chosen to limit migration effects in and out of bins:

- purity (p_i) & stability (s_i) : $\geq 50\%$
- ≈ flat in all bins

$$p_i = \frac{N_i^{rec \& gen}}{N_i^{rec}} \qquad s_i = \frac{N_i^{rec \& gen}}{N_i^{gen}}$$

$$\frac{1}{\sigma} \frac{d \sigma}{dX_i} = \frac{1}{\sigma} \frac{unfold \left(N_{data,i}^X - N_{BG,i}^X\right)}{\Delta_X^i \cdot \int \mathscr{L} dt}$$

Regularized unfolding

- Basic unfolding simple inversion of response matrix A_{ij}:
 N_{i,unf} = A⁻¹_{ij} N_{j,measured}
- Regularization used to remove large statistical fluctuations (SVD)

Phase space

- Correct back to parton or particle level in full or fiducial phase space
- <u>Top quark definition</u>: before decay and after QCD radiation
- Fiducial phase space: closely follows event selection

8 TeV results: leptons & b-jets

- Fiducial phase space, particle level
- Reference tt prediction used for unfolding: MadGraph+Pythia6
- Slightly softer p_τ spectra and less centered η distributions in data
- Good agreement with data in all distributions:
 Powheg+Herwig6
- Consistent with 7 TeV results by CMS: [EPJ C73 (2013) 2339]

M. Savitskyi (DESY)

8 TeV results: top and $t\bar{t}$

- Full phase space, parton level
- Reference tt prediction used for unfolding: MadGraph+Pythia6
- Best description of data by Powheg+Herwig6
- p₁(top): softer in data
- y(top): less central in data
- p_T(tt
): in agreement with all predictions, except NLO+NNLL calculations
- m(tt): softer in data

M. Savitskyi (DESY)

Results consistency: $p_{T}(top)$, $p_{T}(t\bar{t})$

- Left plots: data vs theory predictions at 8 TeV
- Right plots: 7 TeV vs 8 TeV – results consistent
- All values relative to MadGraph+Pythia6
- Results consistent among all decay channels

The $p_{\tau}(top)$ distribution at 8TeV

- p_{τ} (top) spectrum softer in data (in particular at the tail):
 - \rightarrow potential impact on searches and tt+H
- CMS: observed consistently in all channels at 7 & 8 TeV
- ATLAS and CMS data appear in good agreement at 8 TeV

Full NNLO "confirms" observed slope, in direction closer to data

[arXiv:1511.00549] M. Czakon, D. Heymes, A. Mitov

M. Savitskyi (DESY)

13 TeV results: $p_{T}(top)$, |y(top)|, $p_{T}(t\overline{t})$, $|y(t\overline{t})|$

M. Savitskyi (DESY)

13 TeV results: m(tt), N(jets)

- Reference tt prediction used for unfolding: Powheg+Pythia8
- Reasonable agreement between data and predictions
- Dominated by statistical uncertainty

Summary

Top quark pair differential cross section measurements:

- Essential for constraining the SM
- Ideal probe for looking for new physics beyond the SM

Latest dilepton and I+jets 8 TeV results from CMS (L = 19.7 fb⁻¹):

- Measurement dominated by systematical uncertainty: 3-10% precision
- Good agreement between data and predictions
- $p_{\tau}(top)$: NNLO corrections bring SM predictions closer to data

Latest dilepton **13** TeV results from CMS (L = 42 pb⁻¹):

- Measurement dominated by statistical uncertainty
- In general, data described reasonably well by all MC predictions

Other recent differential cross section results by CMS:

8 TeV \rightarrow PAS TOP-14-012 (l+jets: boosted topologies), [arXiv:1509.06076] (all-jets) **13** TeV \rightarrow PAS TOP-15-005 (l+jets), PAS TOP-15-013 (l+jets: global event variables)

M. Savitskyi (DESY)

Backup

Kinematic reconstruction of $t\overline{t}$ in I+jets

- Vary 4-momenta of leptons, jets & neutrino within resolutions
- Constraints:
 - m_{top} = m_{antitop}
 - $m_{qq} = m_{lv} = m_W = 80.4 \text{ GeV}$
- Limit permutations: consider 4/5 leading jets, use b-tag information
- Take 4-jet permutation with minimum χ^2
- "Trick":
 - first fit with m_{top} = 172.5 GeV \rightarrow select best permutation
 - m_{top} free + fixed jet permutation → obtain kinematics for differential measurements
- Cut on χ² probability > 2% → increase correct jet permutations and signal purity

Kinematic reconstruction of $t\overline{t}$ in dileptons

- Measured input: 2 jets, 2 leptons, MET
- Unknowns: $\vec{p}_{v}, \vec{p}_{v} \rightarrow 6$
- Constraints:
 - > m_{t} , $m_{t} \rightarrow 2$
 - > $m_{W(+)}$, $m_{W(-)} \rightarrow 2$ > $(\vec{p}_{v} + \vec{p}_{v})_{T} = MET \rightarrow 2$

- <u>Reconstructing</u> each event 100 times and <u>smearing</u> inputs by their resolution:
 - > top mass fixed to 172.5 GeV
 - > W mass at RECO level smeared accordingly to W mass distribution
 - > Jet and lepton energies are corrected for detector effects
- Consider <u>weighted average</u> of solutions for all smeared points:

$$p_{x,y,z}^{top} = \frac{1}{w} \sum_{i=0}^{100} w_i \cdot (p_{x,y,z}^{top})_i$$

Phase space definitions

- Top quarks and tt observables: presented at parton level, extrapolated to full phase space
 - > Allows for comparison with available highest order QCD calculations
 - > Consistent top quark definition in ATLAS & CMS: before decay and after QCD radiation
- Leptons, jets and b-jets: presented at particle level, fiducial phase space
- Object definition at generator level: based on stable particles after radiation and hadronization
 - Leptons: from W decay
 - > <u>Jets</u>: anti-kT algorithm (as for reco jets), cluster all but prompt particles
 - <u>b-jets</u>: matched to the original b quark from top
- **Phase space definition** closely follows the (detector level) event selection. In example, for dilepton channel:
 - > 2 leptons, p_T > 20 GeV, $|\eta|$ < 2.4
 - > 2 b-jets from top, p_T > 30 GeV, $|\eta|$ < 2.4
 - > (if any) additional jets, $p_{_{\rm T}}$ > 30 GeV, $|\eta|$ < 2.4

Unfolding

- Unfolding techniques correct migrations between bins
- Response matrix (A): represents bin-by-bin correlations
- Unfolding problem is transformed to χ^2 minimization problem:

- Non-physical fluctuations removed by means of the regularization:
 - > τ continuous regularization parameter
 - > selected at minimum of average global correlation

M. Savitskyi (DESY)

Full NNLO vs 8TeV CMS Data: p_r(top), y(top)

- First full NNLO calculations for top-quark pair production at 8 TeV LHC are available! [arXiv:1511.00549, by M. Czakon, D. Heymes, A. Mitov]
- Normalized top/antitop p_{τ} and y theory distributions vs **CMS data** [arXiv:1505.04480]
- NNLO error band from scale variations <u>only</u>
- NNLO QCD corrections bring SM predictions closer to CMS data in all bins of p₁(top)
- NLO and NNLO looks almost identical for $y(top) \rightarrow booking$ forward for new measurements!

M. Savitskyi (DESY)

Overview of uncertainties at 8 TeV

Each uncertainty propagated through analysis chain individually

- For each source, the corresponding efficiency, resolution or scale is changed by its uncertainty or similar
- Systematic unc. per bin: difference of the changed result wrt nominal value

Normalization: only shape uncertainties contribute

Relative systematic uncertainty (%)					
Source	Lepton and b jet observables		Top quark and tt observables		
	ℓ +jets	dileptons	ℓ +jets	dileptons	
Trigger eff. & lepton selec.	0.1	0.1	0.1	0.1	
Jet energy scale	2.3	0.4	1.6	0.8	
Jet energy resolution	0.4	0.2	0.5	0.3	
Background (Z+jets)		0.2		0.1	
Background (all other)	0.9	0.4	0.7	0.4	
b tagging	0.7	0.1	0.6	0.2	
Kinematic reconstruction		< 0.1		< 0.1	
Pileup	0.2	0.1	0.3	0.1	
Fact./renorm. scale	1.1	0.7	1.8	1.2	
ME-PS threshold	0.8	0.5	1.3	0.8	
Hadronization	2.7	1.4	1.9	1.1	
Top quark mass	1.5	0.6	1.0	0.7	
PDF choice	0.1	0.2	0.1	0.5	

Overview of uncertainties at 13 TeV (dilepton)

 Measurement dominated by statistical uncertainty in all bins of each observable

- Hadronization: PowhegV2+Pythia8 vs PowhegV2+Herwig++
- Generator: PowhegV2+Pythia8 vs aMC@NLO(FxFx)+Pythia8

 Typical dominant uncertainties: medians of the distribution of uncertainties over all bins for rapidity (all other) observables

Source	Uncertainty (%)
Generator	3.4 (1.6)
Hadronization	2.3 (2.9)
PDF	1.5 (0.5)
JES	1.2 (1.2)
JER	0.7 (0.8)
b-tagging	0.6 (0.9)