

Imperial College London

Search for a NMSSM H(125) $\rightarrow 2\phi_1 \rightarrow 4\tau$ @ √s = 8 TeV

arXiv:1510.06534

Alexis Kalogeropoulos for the 4τ-eam

Rutherford Appleton Laboratory, UK, DESY Hamburg, Germany Imperial College London, UK, University of California Riverside, USA

Terascale 2015 Hamburg, 17-18.11.2015

Motivation

- NMSSM is MSSM extended by a singlet superfield $|\hat{S}|$
 - This extra \hat{S} introduces
 - a new scalar Higgs boson
 - a *new* pseudo scalar Higgs boson
 - a *new* higgsino

In total, the NMMSM Higgs sector contains :

• 3 CP even $(h_{1,2,3})$ 2 CP odd $(a_{1,2})$ & 2 charged (H^{\pm})

NMSSM is less constrained compared to MSSM

✓ NMSSM solves the μ - & fine tuning problem

Signal Topology

Production of NMSSM h_{1,2} via gluon fusion

- h_{1,2} are identified as the SM-like H(125) observed boson
- φ₁ = h₁, a₁

CMS has explored $m_{\varphi_1} < 2m_\tau$ but not $~2m_\tau < m_{\varphi_1} < 2m_b$

- Thus this analysis explores the $\,4\,GeV < m_{\,\varphi_1} < 8\,GeV$ region
- $\phi_1 \rightarrow \tau \tau$ dominates (as $\phi_1 \rightarrow bb_{\sim}$ is not kinematically allowed)

-φ₁ bosons highly *boosted* and "*back-to-back"*

- -τ-leptons from the same φ1 overlap
 - \Rightarrow thus, *hard* to reconstruct
 - \Rightarrow use simple objects i.e. μ & tracks

τdecays

For each φ₁ decay leg :

- $\Rightarrow \varphi_1 \rightarrow \tau_{\mu} + \tau_e / \tau_{\mu} / \tau_{had,1\text{-prong}}$
- \Rightarrow All $\tau_{had, 1-prong}$ modes considered
- \Rightarrow Each μ is required to have exactly 1 nearby
- charged track \Rightarrow form 2 (µ-trk) pair systems

SS muons with large separation in (φ,η)

Same-Sign μ with $\Delta R \gg$ \Rightarrow Suppress tt, DY, Wjet

Event Yields after final selection

Sample	Number of events
Data	873
	Expected background events
QCD multijets	$820{\pm}320$
$t\bar{t}$	$1.2{\pm}0.2$
Electroweak	$5.0{\pm}4.7$
	Signal Acceptance, $A(gg \to H(125) \to \phi_1 \phi_1 \to 4\tau)$
$m_{\phi_1} = 4$	$(5.38 \pm 0.23) \cdot 10^{-4}$
$m_{\phi_1} = 5$	$(4.36 \pm 0.21) \cdot 10^{-4}$
$m_{\phi_1} = 6$	$(4.00\pm0.23)\cdot10^{-4}$
$m_{\phi_1} = 7$	$(4.04 \pm 0.20) \cdot 10^{-4}$
$m_{\phi_1} = 8$	$(3.13 \pm 0.18) \cdot 10^{-4}$
Number of signa	al events for $\sigma(gg \to H(125)) \cdot BR(H(125) \to \phi_1\phi_1) \cdot BR^2(\phi_1 \to \tau\tau)$ of 5 pb
$m_{\phi_1} = 4$	$53.0{\pm}2.3$
$m_{\phi_1} = 5$	$43.0{\pm}2.0$
$m_{\phi_1} = 6$	$39.5{\pm}2.0$
$m_{\phi_1} = 7$	$39.9{\pm}2.0$
$m_{\phi_1} = 8$	$30.8{\pm}1.8$

QCD multijet background dominates final selected sample

\Rightarrow Data driven estimation

• Other background processes < 1%

2D Mass Distributions as Final Discriminants

<u>Main observable</u> :

Invariant masses of the two (μ ,trk) systems (m₁,m₂)

2D (m₁,m₂) distribution used for signal extraction

$$N(m_1, m_2) = N(m_2, m_1)$$

$$N_{ij} \to N_{ij} + N_{ji}, \ i \neq j$$

Background Shape Modelling

Modelling of 2D (m₁,m₂) background shape in the SR $f_{2D}(m_1,m_2) = C(m_1,m_2)f_{1D}(m_1)f_{1D}(m_2)$

 $f_{2D}(m_1, m_2)$: the normalized 2D distr. of the (m₁, m₂) µ-track systems in the sample of QCD multijet events selected in the SR

 $f_{1D}(m_i)$: the normalized 1D distr. of the inv. mass of the ith μ -track system in the sample of QCD multijet events selected in the SR

 $C(m_1,m_2)$: accounts for correlations between (m₁,m₂)

 $C(m_1, m_2) = 1$: means no correlations between (m₁, m₂).

Background Shape Modelling

Shape of m_1 is independent of N_{trk} in ΔR <0.5 around 2nd μ (left plot)

- Use sideband (CR-A) with N_{trk} = 2,3 around μ to model $f_{1D}(m)$
- Shapes in SR and sideband are compatible (validated at GEN level)

Shape of 1D mass distribution

μ -track system inv. mass is good discriminator of QCD vs signal

Normalized distr. of the µ-track system invariant mass

C (i,j) Mass Correlations

C(i,j) obtained in CR-A (Data)

C(i,j) from dedicated gg(qq) \rightarrow bb sample

C(i,j) obtained from QCD MC are consistent (within stat. uncertainties) with *C(i,j)* obtained from those in the background CR-A

Alexis Kalogeropoulos - Terascale 2015

17.12.2014

Systematic Uncertainties on Background

Statistical uncertainty in background shape modelling :

- $f_{2D}(m_1, m_2)$ is dominated by uncert. in C(i, j)
- Bin-by-bin stat. uncertainties between 2-14%.
 - Accounted for by 10 nuisance parameters (1 per bin)

Systematic uncert related to extrapolation of C(i,j) from CR-A to SR:

- It is derived from dedicated MC study.
- Correlation coefficients between CR-A and SR are 2-22%
- Signal Contamination has been taken into account (small effect)

Systematic Uncertainties on Signal

Luminosity : 2.6 %

Muon-ID & Trigger efficiency : From T&P 2% per μ = 4%

Track selection & Isolation : 10 % from dedicated study of $Z \rightarrow \tau \tau \rightarrow \mu$ +lso track

Muon & Track momentum scale : <0.5%, negligible effect on signal extraction

Source	Value	Affected	Туре	Effect on the
		sample	,,,	total yield
Integrated luminosity	2.6%	signal	norm.	2.6%
Track selection and	5% per track	signal	norm.	10%
isolation efficiency	_	_		
Muon ID and trigger	2% per muon	signal	nørm.	4%
efficiency	-			$\langle \rangle$
Statistical	2–14%	bkg.	bin-by-bin	\ -
uncertainties in $C(i, j)$				$\langle \rangle$
Extrapolation	2–22%	bkg.	bin-by-bin	
uncertainties in $C(i, j)$				
MC statistical	7–100%	signal	bin-by-bin	46%
uncertainties				
Theory uncertainties in the signal acceptance				
$\mu_{\rm r}$ and $\mu_{\rm f}$ variations	1%	signal	norm.	1%
PDF	1%	signal	norm.	1%
Effect of b quark loop	3%	signal	norm.	3%
contribution to $gg \rightarrow H(125)$				

Final 2D (m ,m) distribution "unrolled" into 1D array of bins

Bkg only hypothesis (signal for illustration)

Bkg+Sign hypothesis

17.11.2015

Final Results

Upper limits on $(\sigma \mathcal{B})_{sig}$ [pb] at 95% confidence level						
m_{ϕ_1} [GeV]	observed	-2σ	-1σ	expected	$+1\sigma$	$+2\sigma$
4	7.1	5.7	7.6	10.6	14.9	20.2
5	10.3	5.4	7.3	10.3	15.0	21.2
6	8.6	2.8	3.8	5.4	7.8	11.0
7	5.0	1.6	2.2	3.1	4.5	6.5
8	4.5	1.5	2.0	2.9	4.3	6.2

Alexis Kalogeropoulos - Terascale 2015

Summary

Search for NMSSM H(125) $\rightarrow 2\phi_1 \rightarrow 4\tau$ in [4 < m ϕ_1 < 8] GeV

Performed with full Runl dataset (19.7 fb⁻¹)

The analysis is in arXiv:1510.06534 and soon to appear in JHEP

-

Signal Benchmark

NMMSM models are possible which predict $\sigma(gg \rightarrow H(125)) \times BR(H(125) \rightarrow 2\phi_1 \rightarrow 4\tau)$ ~ few pb

D. Barducci, A. Belyaev S. Moretti

S.F. King, M. Muehlleitner, R. Nevzorov Nucl. Phs. B860 (2012) [arXiv:1201.2671[hep-ph]] "NMSSM Higgs Benchmarks Near 125 GeV"

 $\begin{aligned} \sigma(gg \to H(125)) \times BR \ (H(125) \to 2\phi_1 \to 4\tau) \\ \text{signal is benchmarked with } \sigma \times BR = 5 \text{ pb} \end{aligned}$

Datasets

Dataset	Lumin	osity [fb ⁻¹]
/DoubleMu/Run2012A-22Jan2013-v1/AOD		0.876
/DoubleMuParked/Run2012B-22Jan2013-v1/AO	D	4.411
/DoubleMuParked/Run2012C-22Jan2013-v1/AO	D	7.055
/DoubleMuParked/Run2012D-22Jan2013-v1/AC	D	7.369
Total luminosity at 8 TeV = 19.7	71 [fb ⁻¹]	
	· · · · · · · · · · · · · · · · · · ·	

JSON :Cert 190456-208686 8TeV 22Jan2013ReReco Collisions12 JSON.txt

Process	Generator	σ [pb]	$\epsilon_{\rm MC}$	Number of	equivalent
				generated events	$\mathcal{L}[pb^{-1}]$
$gg \rightarrow h_{1,2} \rightarrow 2\phi_1 \rightarrow 4\tau, m_{h_{1,2}} = 125 \text{ GeV}$	PYTHIA				
$m_{\phi_1} = 4 \text{ GeV}$	\square	~		998650	
$m_{\phi_1} = 5 \text{ GeV}$	$h \mid 1 \mid$	\sim		1020304	
$m_{\phi_1} = 6 \text{ GeV}$				1020050	
$m_{\phi_1} = 7 \text{ GeV}$				1020304	
$m_{\phi_1} = 8 \text{ GeV}$				987800	
$Z + \text{Jets}, m_{II} > 50 \text{ GeV}/c^2$	MADGRAPH	3504	1	1.68.107	4790
$Z + \text{Jets}, m_{II} < 50 \text{ GeV}/c^2$	MADGRAPH	11050	1	7.13·10 ⁶	645
$t\bar{t}$ (dilepton decays of top pairs)	MADGRAPH	26.2	1	$1.20 \cdot 10^{7}$	458450
tī (lepton + jets decays of top pairs	MADGRAPH	109	1	$2.50 \cdot 10^{7}$	229030
W + Jets	MADGRAPH	36257	1	$1.67 \cdot 10^{7}$	463
QCD, $p_T^{\mu} > 15 \text{ GeV}/c$	PYTHIA	$3.65 \cdot 10^8$	2.86.10-4	$1.68 \cdot 10^{7}$	160
inclusive WW	PYTHIA	57	(1 /	1.00.107	175450
inclusive WZ	PYTHIA	32		1.00.107	312510
inclusive ZZ	PYTHIA	8.3	≥ 1	9.80·10 ⁶	1180700

Simulation samples used only for optimization studies

Signal selection

Triggers

Double muon: HLT Mu17 Mu8 OR HLT Mu17 TkMu8

muons fulfil PF-tight criteria (from Muon POG)

- Same-Sign (SS) muons with $\Delta R(\mu-\mu) > 2.0$
- $p_T > 17$ (10) GeV/c for 1st (2nd) μ , $|\eta| < 2.1 & |d_o| < 0.03$ cm, $|d_z| < 0.1$ cm

tracks

μ

Use of high-purity tracks (from Tracker POG)

"Isolation" requirement for each μ :

== 1 track with p_T > 1 GeV/c, $|\eta| <$ 2.4, $|d_o| <$ 1 cm, $|d_z| <$ 1 cm in $\Delta R <$ 0.5 around μ

1-prong τ-decay candidates :

- charge opposite to that of μ i.e. $q_{\mu}+q_{trk} = o$
- $p_T > 2.5 \text{ GeV/c}$, $|\eta| < 2.4 \& |d_0| < 0.02 \text{ cm}$, $|d_z| < 0.04 \text{ cm}$

Impact parameters

17.11.2015

Theoretical Uncertainties on Signal

Renormalization / factorization scales : 1% (with HqT)

PDF : 1% - vary PDF param. set in HqT and recompute signal acc. (MSTWnlo2008.)

Theoretical Uncertainties on Signal

Renormalization / factorization scales : 1% (with HqT)

PDF : 1% (vary PDF set in HqT and recompute signal acceptance)

b-loop to gluon fusion: 3% (Powheg sample with only b-loop contribution)

Signal acceptance is nearly flat vs H(125) pT up to ~ 100 GeV/c

17.11.2015

Modeling of C(m₁,m₂) & background CR

To study (m₁,m₂) correlations we introduce QCD background enriched Control Regions (CR)

Definition of CR

<u>A</u> : 2 SS μ in SR + each μ has **2 or 3** tracks within Δ R < 0.5 - **1** track has to satisfy 1-prong τ -lepton req. while rest tracks **1** < p_T < **2.5 GeV/c (QCD multisite sample)**

<u>B</u> : Used to assess differences of *C(i,j)* in SR vs **A. (dedicated MC sample)**

- At least 1 track has to satisfy 1-prong τ-lepton req. with any number of tracks
- Muons can be paired with softest/hardest 1-prong τ-lepton cand.
 - Both CR are dominated by QCD background

• Background over Signal ratio is enhanced in CR by a factor 12-20

Mu Id and Iso Efficiency

- A.Tag-and-probe with Z $\rightarrow \mu\mu$ events
- **B.**Tight-PF Muon Id
 - A.global and PF muon
 - B.chi2 / ndof < 10
 - C.at least on muon hit
 - **D.**muon segments in at least two muon stations
 - **E.** # pixel hits \geq 1
 - **F.** # tracker hits ≥ 6
 - $G.|d_{o}| < 0.03 \text{ cm and } |d_{z}| < 0.1 \text{ cm}$

C.Isolation (in correspondence with H \rightarrow 2h \rightarrow 4t analysis)

A.no tracks with $p_T > 1 \text{ GeV}$, $|d_0| < 1 \text{ cm}$ and $|d_z| < 1 \text{ cm}$ in the ΔR cone of 0.5 around muon direction

Muon-ID & isolation efficiencies

- Tag&Probe on Z $\rightarrow \mu\mu$ passing HLT_IsoMu24_eta2p1 trigger
- Tag muon : satisfies PF tight Muon ID & HLT trigger object
- Probe muon : muon ID + track iso criteria (no track with pT>1 GeVm |do| < 1 cm, |dz| < 1 cm within ΔR < 0.5 around μ

$p_{\rm T}$ [GeV/c]	η	ϵ_{data}	ϵ_{MC}	SF
	0-0.8	0.618	0.657	0.942
10 - 15	0.8 - 1.6	0.697	0.716	0.973
	1.6-2.1	0.753	0.757	0.993
	0-0.8	0.640	0.651	0.983
15 - 20	0.8-1.6	0.686	0.718	0.956
	1.6-2.1	0.729	0.727	1.003
	0-0.8	0.674	0.683	0.987
20 - 25	0.8-1.6	0.708	0.727	0.974
	1.6-2.1	0.749	0.762	0.982
	0-0.8	0.706	0.724	0.974
25 - 30	0.8-1.6	0.722	0.733	0.984
	1.6-2.1	0.755	0.775	0.974
	0-0.8	0.755	0.778	0.971
> 30	0.8-1.6	0.762	0.781	0.975
	1.6-2.1	0.787	0.801	0.983

Trigger Efficiency

Trigger efficiency obtained from a Z →µµ sample Each event is reweighted with

$$w_{trig} = \left(\epsilon^{\log 17}(p_{T,1},\eta_1) \cdot \epsilon^{\log 8}(p_{T,2},\eta_2) + \right)$$

$$\epsilon^{\log 17}(p_{T,2},\eta_2) \cdot \epsilon^{\log 8}(p_{T,1},\eta_1) -$$

$$\epsilon^{\text{leg17}}(p_{T,1},\eta_1)\cdot\epsilon^{\text{leg17}}(p_{T,2},\eta_2)\Big)$$

$\times \epsilon_{DzFilter}$

- $\epsilon^{\text{leg17}}(p_T, \eta)$: p_T , η dependent efficiency of the trigger leg with $p_T > 17$ GeV
- $\epsilon^{\log 8}(p_T, \eta) : p_T, \eta$ dependent efficiency of the trigger leg with $p_T > 8 \text{ GeV}$
- $p_{\mathrm{T},1}$ and η_1 are transverse momentum and pseudo-rapidity of the first muon
- $p_{\mathrm{T},2}$ and η_2 are transverse momentum and pseudo-rapidity of the second muon
- $\epsilon_{d_Z filter}$ efficiency of $d_Z filter$ of the double muon trigger

Trigger Efficiencies (relative to offline selection)

leg8

p_T , GeV/c	$0 < \eta \le 0.8$	$0.8 < \eta \le 1.2$	$1.2 < \eta \le 2.1$
10-12.5	0.96	0.97	0.92
12.5-15	0.97	0.97	0.93
15-17.5	0.98	0.97	0.94
17.5-20	0.98	0.98	0.94
20-30	0.97	0.98	0.95
>30	0.98	0.98	0.95

leg17

p_T , GeV/c	$0 < \eta \le 0.8$	$0.8 < \eta \le 1.2$	$1.2 < \eta \leq 2.1$
10-12.5	0.00	0.00	0.00
12.5 - 15	0.00	0.02	0.01
15 - 17.5	0.24	0.22	0.23
17.5 - 20	0.96	0.93	0.91
20 - 30	0.97	0.94	0.92
>30	0.96	0.93	0.92

DzFilter efficiency measured to be <u>0.95</u> for entire 2012 data-taking period

Signal acceptance for $m(H_1) = 4$, 8 GeV

Higgs p_T spectrum reweighting

- PYTHIA is giving LO diagrams
- Use HqT to reweight Higgs p_T spectrum to account for NLO + NNLL loops
- Also considered variation of renormation & factorization scales by $\cdot \frac{1}{2}$ & $\cdot 2$
- Dedicated study with PowHeg sample to account for b &SUSY loop diagrams

		\ \
Quantity / ϕ_1 mass	4 GeV	8 GeV
no $p_{\rm T}$ Reweighting (·10 ⁻⁴)	5.28 ± 0.22	3.05 ± 0.18
Nominal scale (·10 ⁻⁴) (HqT)	5.38 ± 0.23	3.13 ± 0.18
Nominal scale (10^{-4}) (PowHeg (b-loop))	5.55 ± 0.23	3.20 ± 0.18
Scale up(·10 ⁺⁴)	5.41 ± 0.23	3.16 ± 0.18
Scale down(·10 ⁻⁴)	5.35 ± 0.23	3.09 ± 0.18

Signal Contamination

The coupling analysis performed by CMS constrains branching ratio of non-SM decays of the H(125) state to be BR_{BSM}<0.32 at 95% C.L..

Contamination of CR by Signal

Contamination of CR

Conservative estimation of the signal contamination in the CRs $\Rightarrow \sigma(gg \rightarrow (H(125)) = 19.3 \text{ pb} (SM \text{ prediction})$

-BR (H(125) \rightarrow 2 φ 1 \rightarrow 4 τ) = 32%

 \Rightarrow corresponds to upper limit @ 95% C.L. on BR_{BSM} (H(125)) (HIG-14-007)

-Contamination < 2% in all bins for all m_{ϕ_1} [4-8] GeV

• except bin (4,4) where contamination = 12% for m_{φ_1} = 8 GeV

-Effect on expected limits is ~ 1.% for each probed φ1 mass

- related uncertainty neglected to keep background model independent of m_{φ_1}

4 GeV	8 GeV
$.28 \pm 0.22$	3.05 ± 0.18
$.38 \pm 0.23$	3.13 ± 0.18
$.55 \pm 0.23$	3.20 ± 0.18
$.41 \pm 0.23$	3.16 ± 0.18
$.35 \pm 0.23$	3.09 ± 0.18
	$\begin{array}{r} 4 \text{ GeV} \\ 28 \pm 0.22 \\ 38 \pm 0.23 \\ 55 \pm 0.23 \\ 41 \pm 0.23 \\ 35 \pm 0.23 \end{array}$

17.11.2015

Signal extraction

- Signal is extracted with **maximum-likelihood fit**
- Fitting 2D(m₁,m₂) with 2 templates, 1 for background (data-driven template) and
 1 for signal (obtained from simulation)
- Background & Signal normalization is allowed to float freely in fit
 - pure shape analysis
- **Normalization** altering uncertainties are incorporated in fit as nuisance parameters with a *Log-normal* prob. density function
- **Shape** altering uncertainties are incorporated in fit as nuisance parameters with a *Gaussian* prob. density function
 - Their variation causes continuous morphing of templates
- Background-only fit is also performed to test compatibility of Data with background-only Hypothesis
- Official *Higgs Combination* software is used for statistical analysis
 - In absence of excess we set upper limit on the **σxBR** using **Freq-CLs** approach

Goodness of fit test

Goodness of fit test

The Goodness of fit test in the Higgs combination package is based on the χ^2 statistical indicator of the saturated model

$$\chi_{sat}^{2} = \sum_{i} \frac{(d_{i} - s_{i} - b_{i})^{2}}{\sigma_{P}^{2}(d_{i})}$$

- d_i number of data events in bin "i"
- s_i expected signal events in bin "i"
- b_i expected background events in bin "i"

- $\sigma_P(d_i)$ - asymmetric Poisson error associated with the observed data events in bin "i"

- Signal and background expectation in each bin "i" are determined by MaxLikelihoodFit of data with the probed signal+background model p.d.f.
- In the next step ensemble of toy mc datasets is generated to determine the distribution of the goodness of fit indicator
 - in each toy dataset fit of model to the generated data pattern is performed yielding and of chi2 value is computed
 - when fitting model to generated toy dataset, signal strength is left floating in the fit, so that the measure is independent from the presence or absence of a signal

 s_i