

Measurements of the top quark pair production cross section in pp collisions

EPS-HEP 2015
European Physical Society Conference on High Energy Physics

Eleni Ntomari for the CMS collaboration

July 23, 2015

Outline

- Top quark pair production and decay
- Inclusive cross sections
 - 7 TeV (dilepton, lepton+jets, fully hadronic)
 - 8 TeV (dilepton, lepton+jets, τ +jets)
 - 8 TeV Combination of ATLAS and CMS
 - α_s extraction from $\sigma(t\bar{t})$
- Top quark pair + jets $(b\bar{b}, t\bar{t})$

Top quarks: key to QCD, electroweak (EWK) and new physics

- The most massive known particle
- Decays before hadronisation: study properties of bare quark
- Essential to study Higgs properties
 - Sensitivity to Higgs through loop corrections
 - Measure top Yukawa coupling; Yukawa coupling to Higgs ~ 1

Measuring $\sigma_{t\bar{t}}$ is the first fundamental step for understanding top physics

- Huge relevance for SM and BSM:
 - In the frame of Standard Model, test QCD predictions at NNLO
 - Sensitive to New Physics Beyond the Standard Model
 - ♦ Test the presence of new production mechanisms
 - Help constraining modeling PDFs (essential ingredient in QCD calculation)
 - \diamond Determination of m_t^{pole} or α_s
- Important background for many Higgs and BSM searches at LHC

Top quark production in pp collisions at the LHC

$t\bar{t}$ production mainly by gluon fusion (\sim 80% at 7-8 TeV)

LHC Run I: Top Quark Factory

- peak inst. luminosity: $8 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- 7000 top quark pairs per hour (8 TeV)
- 20 fb $^{-1}$ (8 TeV) + 5 fb $^{-1}$ (7 TeV) recorded: \sim 6M top quark pairs produced at CMS

Full NNLO+NNLL calculation¹

\sqrt{s}	$\sigma_{t\bar{t}}$ (NNLO+NNLL) ² [pb]	Scale	PDF+ α_s^3	Mass
[TeV]	(172.5 GeV)	uncert. [pb]	uncert. [pb]	uncert. [pb]
7	177.3	+4.6 -6.0	+9.0 -9.0	+5.4 -5.3
8	252.9	+6.4 -8.6	+11.7 -11.7	+7.6 -7.3
13	831.8	+19.8 -29.2	+35.1 -35.1	+23.2 -22.5

¹https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO

 $^{^{2}}$ calculated using Top $^{++}$ (v2.0)

 $^{^{3}}$ calculated following PDF4LHC prescription

Top quark decay

- ullet Decays into W-boson and b-quark ${\sim}100\%$
- Final state topology depends on W decay:
 "dileptons", "lepton+jets", "alljets"

Top Pair Branching Fractions

Typical event selection for $t\bar{t}$ analyses

Dilepton decay mode

- \geq 2 opposite sign isolated leptons (p_T >20 GeV, $|\eta|$ <2.4)
- \geq 2 jets (anti-k_T, R<0.5, p_T > 30 GeV, $|\eta|$ <2.4)
- ullet ≥ 1 b-tagged jet
- For same flavour channels QCD & Z veto (MET>40 GeV, exclude $m_Z\pm 15$ GeV)

Lepton+jets decay mode

- ≥ 1 isolated lepton (electron or muon) (p_T >26, 30 GeV, $|\eta| <$ 2.1, 2.5)
- \geq 4 jets (anti-k_T, R<0.5, p_T >45, 45, 35 and 35 GeV, $|\eta|$ <2.5)
- ≥ 1 b-tagged jets

$t\bar{t}$ Inclusive Cross Section at 8 TeV: Dilepton

JHEP 02 (2014) 024

- Small background and clean final state
- Cut and count analysis
- Baseline MC: MadGraph+Pythia

- Drell-Yan and non-W/Z background estimated from data
- Dominant syst.: JES and background

 $\sigma_{t\bar{t}}=239\pm2~{
m (stat.)}\pm11~{
m (syst.)}\pm6~{
m (lum.)}~{
m pb} o{
m 5\%}$ total uncertainty

$t\bar{t}$ Inclusive Cross Section at 8 TeV: τ + leptons

- Important channel for charged Higgs boson searches
- Selection:
 - \diamond One isolated lepton (e, μ)

- $\diamond \geq 3$ jets (one b-tagged) 400 \diamond τ decaying into hadrons MET 200 Cut and Count method \diamond Determine τ fakes from multijet 150 200 250 300 350 400 m_{top} [GeV] W+jets from data Systematics dominated by fake τ and b-tag uncertainties

Events / 10

1000

800

600

CMS

 $\sigma_{t\bar{t}} = 257 \pm 3 \text{ (stat.)} \pm 24 \text{ (syst.)} \pm 7 \text{ (lum.)} \text{ pb} \rightarrow 9.8\% \text{ total uncertainty}$

 $t\bar{t} \rightarrow I \tau_b + X$

single top

//// total uncertainty

dileptons DY+diboson

misidentified τ.

$t\bar{t}$ Inclusive Cross Section at 8 TeV: e/μ + jets

CM5-PAS-TOP-12-006

- Two approaches: Binned likelihood fit of signal and background to:
 - \diamond Lepton and b-tagged jet invariant mass (M_{lb}) in data
 - Mass of the 3-jet combination with the event's highest transverse momentum (M3)
- QCD background shape from data

 $\sigma_{t\bar{t}} = 228.4 \pm 9.0 \; ext{(stat.)} \; ^{+29.0}_{-26.0} \; ext{(syst.)} \; \pm \; 10.0 \; ext{(lum.)} \; ext{pb}
ightarrow ^{+14.0}_{-12.8} \% \; ext{total uncertainty}$

Summary of $t\bar{t}$ Inclusive Cross Sections (7 & 8 TeV)

Good agreement between channels, experiments and theory (systematics-limited precision)

Summary of $t\bar{t}$ Inclusive Cross Sections

- Good agreement between data and prediction, as well as between experiments
 - LHC combination at 8TeV for eμ channel: 3.5% (most precise result)
 (CMS-PAS TOP-14-016 / ATLAS-CONF-2014-054)

$\alpha_s(M_Z)$ from Top Pair Cross Section

PLB 728 (2014) 496

- Use high precision measurements of $\sigma(t\bar{t})$ to:
 - \diamond determine α_s for a fixed m_t^{pole} for different PDF sets
 - \diamond or determine m_t^{pole} for a fixed α_s \rightarrow See talk from J. Kieseler
- Most probable result from joint likelihood between theory and experiment

- First α_s determination from $\sigma(t\bar{t})$ and first result at full NNLO QCD obtained
 - at a hadron collider \rightarrow

NNPDF2.3: $\alpha_s(m_Z) = 0.1151^{+0.0028}_{-0.0027}$ (NNPDF2.3)

Cross section ratio $\frac{\sigma(t\bar{t}b\bar{b})}{\sigma(t\bar{t}jj)}$: e/μ + jets

CMS TOP-13-016

- Irreducible non resonant background in the search for $t\bar{t}H(b\bar{b})$
- Test validity of NLO QCD calculations
- Measurement of ratio $\sigma(t\bar{t}bb)/\sigma(t\bar{t}jj)$: large uncertainties cancellation
 - \diamond Selection: one isolated lepton, $\ge\!\!4$ jets, $\ge\!\!2$ b-tagged jets
 - Signal extraction by fit to the measured b-tagging discriminator
 - Dominant systematic: mistag efficiency

Eleni Ntomari (DESY)

* Jet flavour at gen. level defined by the flavor of the leading quark (hardB) or by the presence of a B hadron in the list of jet constituents (hadronB)

Cross section ratio $\frac{\sigma(t\bar{t}b\bar{b})}{\sigma(t\bar{t}jj)}$: Dilepton

PLB 746 (2015) 132

- Similar analysis strategy with CMS TOP-13-016
 - \diamond Selection: dilepton events with \geq 4 jets, \geq 2 b-tagged jets

• Combination of three dilepton categories (ee, $e\mu$, $\mu\mu$)

 $rac{\sigma(tar{t}bar{b})}{\sigma(tar{t}jj)}=0.022\pm0.004$ (stat.) \pm 0.005 (syst.)

$t\bar{t}t\bar{t}$

JHEP11 (2014) 154

- $\sigma_{t\bar{t}t\bar{t}^{SM}}pprox 1$ fb at 8 TeV (LO)ightarrow very low cross section!
 - $\diamond \sim$ 9-15 times larger cross section in Run II
- Selection: 1 lepton (e, μ) , ≥ 6 jets, ≥ 2 b-tagged jets, $H_T > 400$ GeV, $E_T^{miss} \geq 30$ GeV
- Main background: $t\bar{t}+$ jets (5 orders of magnitude larger cross section)
- Event classification scheme based on a BDT algorithm
 - Top content, event activity and b-jet content
 - Limit setting: simultaneous fit to BDT output distributions

Summary and Outlook

- \bullet LHC: Run I \sim 6M top quark pairs in CMS
- Many measurements available for $\sigma_{t\bar{t}}$ in different channels with increasing precision, competing with NNLO theory
- Precise measurements of the $\sigma_{t\bar{t}}$ allows to perform measurements of other interesting parameters such as α_s
- All results so far in agreement with SM predictions
- Measurements of $t\bar{t}bb$ and $t\bar{t}t\bar{t}$ (dominated by statistics)
- More 8 TeV results close to be public
- Top community has already started looking at LHC Run II data
 - \diamond More top quarks: $\sigma_{t\bar{t}}$ increases by a factor \sim 3 !
 - \diamond Reach higher $m_{t\bar{t}}$, p_T^t ranges
 - \diamond Measurement of the ratio of $\sigma_{t\bar{t}}$ at different \sqrt{s} : expected to contribute to a better knowledge of NNLO PDFs
- All CMS top public results can be found in: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsTOP

Hot off the Press!

First Jet and b-jet multiplicities in the $e\mu$ channel at 13 TeV

Stay tuned!