Measurements of the top quark pair production cross section in pp collisions EPS-HEP 2015 European Physical Society Conference on High Energy Physics Eleni Ntomari for the CMS collaboration July 23, 2015 #### **Outline** - Top quark pair production and decay - Inclusive cross sections - 7 TeV (dilepton, lepton+jets, fully hadronic) - 8 TeV (dilepton, lepton+jets, τ +jets) - 8 TeV Combination of ATLAS and CMS - α_s extraction from $\sigma(t\bar{t})$ - Top quark pair + jets $(b\bar{b}, t\bar{t})$ # Top quarks: key to QCD, electroweak (EWK) and new physics - The most massive known particle - Decays before hadronisation: study properties of bare quark - Essential to study Higgs properties - Sensitivity to Higgs through loop corrections - Measure top Yukawa coupling; Yukawa coupling to Higgs ~ 1 Measuring $\sigma_{t\bar{t}}$ is the first fundamental step for understanding top physics - Huge relevance for SM and BSM: - In the frame of Standard Model, test QCD predictions at NNLO - Sensitive to New Physics Beyond the Standard Model - ♦ Test the presence of new production mechanisms - Help constraining modeling PDFs (essential ingredient in QCD calculation) - \diamond Determination of m_t^{pole} or α_s - Important background for many Higgs and BSM searches at LHC ### Top quark production in pp collisions at the LHC ## $t\bar{t}$ production mainly by gluon fusion (\sim 80% at 7-8 TeV) LHC Run I: Top Quark Factory - peak inst. luminosity: $8 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ - 7000 top quark pairs per hour (8 TeV) - 20 fb $^{-1}$ (8 TeV) + 5 fb $^{-1}$ (7 TeV) recorded: \sim 6M top quark pairs produced at CMS #### Full NNLO+NNLL calculation¹ | \sqrt{s} | $\sigma_{t\bar{t}}$ (NNLO+NNLL) ² [pb] | Scale | PDF+ α_s^3 | Mass | |------------|---|--------------|-------------------|--------------| | [TeV] | (172.5 GeV) | uncert. [pb] | uncert. [pb] | uncert. [pb] | | 7 | 177.3 | +4.6 -6.0 | +9.0 -9.0 | +5.4 -5.3 | | 8 | 252.9 | +6.4 -8.6 | +11.7 -11.7 | +7.6 -7.3 | | 13 | 831.8 | +19.8 -29.2 | +35.1 -35.1 | +23.2 -22.5 | ¹https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO $^{^{2}}$ calculated using Top $^{++}$ (v2.0) $^{^{3}}$ calculated following PDF4LHC prescription #### Top quark decay - ullet Decays into W-boson and b-quark ${\sim}100\%$ - Final state topology depends on W decay: "dileptons", "lepton+jets", "alljets" #### Top Pair Branching Fractions ## Typical event selection for $t\bar{t}$ analyses #### Dilepton decay mode - \geq 2 opposite sign isolated leptons (p_T >20 GeV, $|\eta|$ <2.4) - \geq 2 jets (anti-k_T, R<0.5, p_T > 30 GeV, $|\eta|$ <2.4) - ullet ≥ 1 b-tagged jet - For same flavour channels QCD & Z veto (MET>40 GeV, exclude $m_Z\pm 15$ GeV) #### Lepton+jets decay mode - ≥ 1 isolated lepton (electron or muon) (p_T >26, 30 GeV, $|\eta| <$ 2.1, 2.5) - \geq 4 jets (anti-k_T, R<0.5, p_T >45, 45, 35 and 35 GeV, $|\eta|$ <2.5) - ≥ 1 b-tagged jets ### $t\bar{t}$ Inclusive Cross Section at 8 TeV: Dilepton #### JHEP 02 (2014) 024 - Small background and clean final state - Cut and count analysis - Baseline MC: MadGraph+Pythia - Drell-Yan and non-W/Z background estimated from data - Dominant syst.: JES and background $\sigma_{t\bar{t}}=239\pm2~{ m (stat.)}\pm11~{ m (syst.)}\pm6~{ m (lum.)}~{ m pb} o{ m 5\%}$ total uncertainty ## $t\bar{t}$ Inclusive Cross Section at 8 TeV: τ + leptons - Important channel for charged Higgs boson searches - Selection: - \diamond One isolated lepton (e, μ) - $\diamond \geq 3$ jets (one b-tagged) 400 \diamond τ decaying into hadrons MET 200 Cut and Count method \diamond Determine τ fakes from multijet 150 200 250 300 350 400 m_{top} [GeV] W+jets from data Systematics dominated by fake τ and b-tag uncertainties Events / 10 1000 800 600 CMS $\sigma_{t\bar{t}} = 257 \pm 3 \text{ (stat.)} \pm 24 \text{ (syst.)} \pm 7 \text{ (lum.)} \text{ pb} \rightarrow 9.8\% \text{ total uncertainty}$ $t\bar{t} \rightarrow I \tau_b + X$ single top //// total uncertainty dileptons DY+diboson misidentified τ. ## $t\bar{t}$ Inclusive Cross Section at 8 TeV: e/μ + jets CM5-PAS-TOP-12-006 - Two approaches: Binned likelihood fit of signal and background to: - \diamond Lepton and b-tagged jet invariant mass (M_{lb}) in data - Mass of the 3-jet combination with the event's highest transverse momentum (M3) - QCD background shape from data $\sigma_{t\bar{t}} = 228.4 \pm 9.0 \; ext{(stat.)} \; ^{+29.0}_{-26.0} \; ext{(syst.)} \; \pm \; 10.0 \; ext{(lum.)} \; ext{pb} ightarrow ^{+14.0}_{-12.8} \% \; ext{total uncertainty}$ ## Summary of $t\bar{t}$ Inclusive Cross Sections (7 & 8 TeV) Good agreement between channels, experiments and theory (systematics-limited precision) ### Summary of $t\bar{t}$ Inclusive Cross Sections - Good agreement between data and prediction, as well as between experiments - LHC combination at 8TeV for eμ channel: 3.5% (most precise result) (CMS-PAS TOP-14-016 / ATLAS-CONF-2014-054) ## $\alpha_s(M_Z)$ from Top Pair Cross Section PLB 728 (2014) 496 - Use high precision measurements of $\sigma(t\bar{t})$ to: - \diamond determine α_s for a fixed m_t^{pole} for different PDF sets - \diamond or determine m_t^{pole} for a fixed α_s \rightarrow See talk from J. Kieseler - Most probable result from joint likelihood between theory and experiment - First α_s determination from $\sigma(t\bar{t})$ and first result at full NNLO QCD obtained - at a hadron collider \rightarrow NNPDF2.3: $\alpha_s(m_Z) = 0.1151^{+0.0028}_{-0.0027}$ (NNPDF2.3) ## Cross section ratio $\frac{\sigma(t\bar{t}b\bar{b})}{\sigma(t\bar{t}jj)}$: e/μ + jets CMS TOP-13-016 - Irreducible non resonant background in the search for $t\bar{t}H(b\bar{b})$ - Test validity of NLO QCD calculations - Measurement of ratio $\sigma(t\bar{t}bb)/\sigma(t\bar{t}jj)$: large uncertainties cancellation - \diamond Selection: one isolated lepton, $\ge\!\!4$ jets, $\ge\!\!2$ b-tagged jets - Signal extraction by fit to the measured b-tagging discriminator - Dominant systematic: mistag efficiency Eleni Ntomari (DESY) * Jet flavour at gen. level defined by the flavor of the leading quark (hardB) or by the presence of a B hadron in the list of jet constituents (hadronB) ## Cross section ratio $\frac{\sigma(t\bar{t}b\bar{b})}{\sigma(t\bar{t}jj)}$: Dilepton PLB 746 (2015) 132 - Similar analysis strategy with CMS TOP-13-016 - \diamond Selection: dilepton events with \geq 4 jets, \geq 2 b-tagged jets • Combination of three dilepton categories (ee, $e\mu$, $\mu\mu$) $rac{\sigma(tar{t}bar{b})}{\sigma(tar{t}jj)}=0.022\pm0.004$ (stat.) \pm 0.005 (syst.) #### $t\bar{t}t\bar{t}$ #### JHEP11 (2014) 154 - $\sigma_{t\bar{t}t\bar{t}^{SM}}pprox 1$ fb at 8 TeV (LO)ightarrow very low cross section! - $\diamond \sim$ 9-15 times larger cross section in Run II - Selection: 1 lepton (e, μ) , ≥ 6 jets, ≥ 2 b-tagged jets, $H_T > 400$ GeV, $E_T^{miss} \geq 30$ GeV - Main background: $t\bar{t}+$ jets (5 orders of magnitude larger cross section) - Event classification scheme based on a BDT algorithm - Top content, event activity and b-jet content - Limit setting: simultaneous fit to BDT output distributions ### **Summary and Outlook** - \bullet LHC: Run I \sim 6M top quark pairs in CMS - Many measurements available for $\sigma_{t\bar{t}}$ in different channels with increasing precision, competing with NNLO theory - Precise measurements of the $\sigma_{t\bar{t}}$ allows to perform measurements of other interesting parameters such as α_s - All results so far in agreement with SM predictions - Measurements of $t\bar{t}bb$ and $t\bar{t}t\bar{t}$ (dominated by statistics) - More 8 TeV results close to be public - Top community has already started looking at LHC Run II data - \diamond More top quarks: $\sigma_{t\bar{t}}$ increases by a factor \sim 3 ! - \diamond Reach higher $m_{t\bar{t}}$, p_T^t ranges - \diamond Measurement of the ratio of $\sigma_{t\bar{t}}$ at different \sqrt{s} : expected to contribute to a better knowledge of NNLO PDFs - All CMS top public results can be found in: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsTOP #### Hot off the Press! First Jet and b-jet multiplicities in the $e\mu$ channel at 13 TeV #### Stay tuned!