

Overview of Physics Results from the CMS Experiment

Somnath Choudhury (for the CMS collaboration)

- Higgs Physics
- EW Measurements
- QCD Physics
- B physics
- Top physics
- Forward Physics
- BSM Searches
- Heavy Ion Physics

Publications

http://cms-results.web.cern.ch/cms-results/public-results/publications/

Accelerator, Detector and Physics Objects

The LHC

- 3.8 T superconducting solenoid envelop:
- Tracker (silicon pixel and strip detectors) |η| < 2.5
- ECAL (PbWO₄ crystals)
- HCAL (brass/scintillator samplers)

Barrel |**η**| < 1.48 Endcap 1.48 < |**η**| < 3.0

 Muon Chambers – gas ionization detectors embedded in steel return yoke outside the solenoid, |η| < 2.4 Drift Tubes, Cathode Strips and Resistive Plate Chambers

 \Rightarrow Event description in form of mutually exclusive particles

- \Rightarrow identification of all stable particles produced in the event
- ⇒ combining capabilities of each sub-detector most precise measurement of the energy and direction for each particle

⇒ individual measurements combined by a geometrical linking algorithm, e.g. extrapolating a charged-particle track into ECAL and HCAL particle ID on blocks of linked elements

Physics object reconstruction utilises this technique, excellent performing even at high pileup

Higgs Physics

Higgs is a journey, not a destination

Great achievement to a four decade long quest A Higgs-like state pinned down at 125 GeV mass

Over 5000

authors in

Combined ATLAS + CMS

Higgs Mass

Phys. Rev. Lett. 114 (2015) 191803

Results from simultaneous fit to the reconstructed invariant mass peaks in $\gamma\gamma$ and $ZZ^* \rightarrow 4l$ channels for ATLAS and CMS

2D likelihood scan for \mathbf{K}_{g} and \mathbf{K}_{γ}

parameters assuming that $\Gamma_{BSM}=0$

CMS-PAS-HIG-14-009

Results within 1σ of Standard Model prediction

Higgs Spin & Parity

Using full angular information defining 4 lepton system

• For each hypothesis create kinematic discriminant for SM vs alternative hypothesis

• Perform 2D fit of hypothesis discriminant versus background discriminant and perform hypothesis test

Several J^P hypotheses have been tested Consistency with the SM scalar boson

Somnath Choudhury (IISER - Bhopal)

Observed limit of 5.4 x SM corresponding to ~ 22 MeV @ 95% CL Physics Letters B 736, 64 (2014)

Higgs in Fermion Decays @ LHC

Strong evidence for the direct coupling of the 125 GeV Higgs boson to fermions, with an observed (expected) significance of 3.8σ (4.4 σ)

Channel	Signific	Significance (σ)	
$(m_{\rm H} = 125 {\rm GeV})$) Expected	Observed	μ
$VH \rightarrow b\overline{b}$	2.3	2.1	1.0 ± 0.5
$H \rightarrow \tau \tau$	3.7	3.2	0.78 ± 0.27
Combined	4.4	3.8	0.83 ± 0.24
- 1 ∪ 2 	$\begin{array}{c} \text{CMS} \\ 18 \\ 16 \\ 14 \\ 12 \\ 10 \\ 3.2 \\ 0 \\ 8 \\ 6 \\ 4 \\ 2 \\ 10 \\ 12 \\ 10 \\ 3.2 \\ 0 \\ 14 \\ 12 \\ 10 \\ 12 \\ 10 \\ 14 \\ 12 \\ 10 \\ 12 \\ 10 \\ 14 \\ 12 \\ 10 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$s = 7 \text{ TeV}, L = 5 \text{ fb}^{-1}; \sqrt{s} =$ $m_H = 125 \text{ Ge}$ $WH \rightarrow b$ $H \rightarrow \tau \tau$ Combin standard model	ed = 8 TeV, L = 19-20 fb ⁻¹ V b 4 σ 2 σ 1 σ
-)	0 0.2 0.4 0.	.6 0.8 1 1.2	1.4 1.6 1.8 U

- We know it exists! Phys. Lett. B 716 (2012) 30
- We know its a **boson**.
- We know its mass : CMS PAS HIG-14-009

 $m_H(\text{CMS}) = 125.03 \stackrel{+0.26}{_{-0.27}} \text{(stat)} \stackrel{+0.13}{_{-0.15}} \text{(syst)}$

- We have strong evidence that it **couples to fermions Nat. Phys. 10 (2014) 557** Couplings are determined within 15 to 20% accuracy, leaving room for **BSM physics**
- We have reasons to believe that it is a spin 0 CP even object
 Phys. Rev. D 89 (2014) 092007
- We know it's a **Higgs boson**!

Is this THE Higgs boson (of the SM) or is it just A Higgs boson?

Run I searches covered a large range of BSM Higgs boson signatures

► LHC is the discovery machine
 → the adventure in the TeV energy regime has just begun

BSM Higgs Sector

Lepton Flavour Violating Higgs Decays

Invisible Higgs Decays

MSSM / 2 HDM

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13021PaperTwiki

95% CL upper bound on cross-section x $\mathscr{B}r (\Phi \rightarrow \tau \tau)$ – based on the mass shape of $m_{\tau\tau}$ distribution mapped to m_A – tan β plane (4FS + 5FS)

Excludes previously unexplored region: reaching tan $\beta \sim 3.9$ at m_A = 140 GeV

CMS PAS HIG-14-005

$$B(H \to l^{\alpha} l^{\beta}) = \frac{\Gamma(H \to l^{\alpha} l^{\beta})}{\Gamma(H \to l^{\alpha} l^{\beta}) + \Gamma_{SM}}$$

$$\Gamma(H \to l^{\alpha} l^{\beta}) = \frac{m_h}{8\pi} (|Y_{l^{\beta} l^{\alpha}}|^2 + |Y_{l^{\alpha} l^{\beta}}|^2)$$

- Constraint placed on B(H →μτ) < 1.57% at 95% CL
- The best fit branching fraction is B(H $\rightarrow \mu \tau$) = (0.89^{+0.40}_{-0.37})%
- The limit is subsequently used to constrain the Y_{μτ} Yukawa coupling

Invisible Higgs Decays

Ratio of 3-jets of 2-jets, 3-jet mass, and incl. jet x-sections constrain α_8 up to so far unprobed scales Q ~ 1.4 TeV

arXiv:1410.6765, arXiv:1412.1633

Measurements dominated by theoretical uncertainty. PDF & scale uncertainty, e.g. incl. jets:

 $\alpha_S(M_Z) = 0.1185 \pm 0.0019 \,(\mathrm{exp}) \,{}^{+0.0060}_{-0.0037}$ (theo)

Legacy performance for jet energy scale and resolution for 8 TeV data

- Corrections derived accounting for pile-up, detector response, residual η and p_T dependence, and (optionally) flavour
- Corrections derived using a mix of dijet, Z+jet, and γ +jet data
- Uncertainties < 3% across the phase space considered by most analyses

Electroweak Physics

Cross-section Measurements

W/Z/tt + jets

Top Physics

Combined LHC + Tevatron

Top Mass

Top Pair Differential Cross-section

Inclusive cross sections 275.6 ± 39.0 pb (14% precision)

dominated by **JES** and **BTag** uncertainties performed differential measurements as a function of top p_T

- results presented at **detector**, **parton**, and **particle** level
- theory predicts systematically harder spectrum
- in agreement with measurements in **lepton+jets** and **dilepton channels** at parton level

Forward & Small-x QCD Physics

CMS

CMS-PAS-FSQ-12-035

CMS-PAS-FSQ-13-003

B - physics

Phys. Rev. Lett. 111 (2013) 101804

maximum-likelihood fit to dimuon invariant mass distribution for BF ($B_8 \rightarrow \mu^+ \mu^-$), significance 4.3 σ

Event Display B_s→µµ

Combined CMS + LHCb

 $B_s \rightarrow \mu \mu$ Results

First observation of the $B_8^0 \rightarrow \mu^+ \mu^-$ decay, with 6σ significance, and the <u>best measurement of its branching fraction</u> so far, and 3σ evidence for the $B^0 \rightarrow \mu^+ \mu^-$ decay CE EDUCAT

"They have been stuck in that model, like birds in a gilded cage, ever since."

Sill

BSM Physics

 $= -\frac{1}{4} F_{AV} F^{AV}$ + iFBY + h.c. L =

SUSY - OS dileptons

SUSY limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

SUSY searches summary

Probe *up to* the guoted mass limit

Somnath Choudhury (IISER - Bhopal)

ENCE EDUCATION

IONI . TAGO

Heavy Ion Physics

Hot Nuclear Matter

 CMS Experiment at LHC, CER

 Durify experiment at LHC, CER

 Lurify experiment at LHC, CER

Smashing heavy nuclei inside particle colliders creates a hot nuclear matter thought similar to the primordial QGP

To explore properties of the medium, CMS compares the properties of the particles produced in heavy ion collisions (PbPb) with those produced in proton collisions

CMS first experiment to successfully separate signals of the **three Y** states in heavy ion collisions

Y Suppression

Having to traverse the hot medium will cause particles such as Υ , produced in these interactions, to "melt" or be suppressed in it Bound states possibly destroyed as a result of interacting with the medium before they could decay into muons

Ratio of $\Upsilon(2S)$ to $\Upsilon(1S) \sim 21\%$ and ratio of $\Upsilon(3S)$ to $\Upsilon(1S) \sim 6\%$ in PbPb collisions relative to those with pp collisions - results with 5σ significance

in the ratio $p_T{}^{Jet}\!/p_T{}^{\gamma}$ relative to pp observed

0.6

0

100

200

N_{part}

300

400

Summary & Prospects

After the 125 GeV Higgs boson discovery, the measurement of its properties cross-section have been performed at LHC run-1

A first Higgs combination measurement of ATLAS and CMS on Higgs mass In the BSM Higgs searches, **no additional Higgs bosons** have been detected

Cross-section measurement in **electroweak, top and QCD physics** very well compared to theoretical predictions **Top mass** measurement combining LHC and Tevatron data

 $B_S \rightarrow \mu^+ \mu^-$ observed for the first time and the results combined with LHCb

The heavy ion physics program yielded excellent results on the state of nuclear matter characterization

No new physics detected so far in Higgs or SUSY sector or other exotic scenarios / dark matter searches

But

we only collected < 1% of the LHC Luminosity @ half the center-of-mass energy

13 TeV run has started and the hunt for new physics has begun

CMS Experiment at the LHC, CERN Data recorded: 2015-Jun-03 08:48:32.279552 GMT Run / Event / LS: 246908 / 77874559 / 86