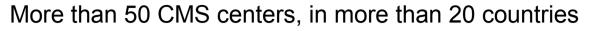


Pooling the Resources of the CMS Tier-1 Sites

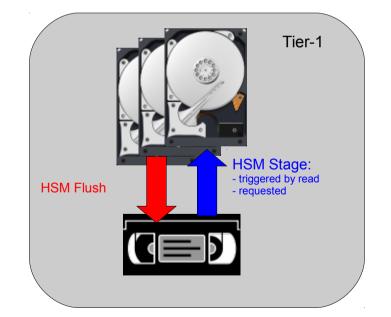
Oliver Gutsche (FNAL), Nicolo Magini (FNAL), <u>Christoph Wissing (DESY)</u> for the CMS Collaboration


April 14th, 2015

HELMHOLTZ ASSOCIATION

Distributed Computing Infrastructure

Tier 0


- Main task in Run1:
 - Prompt reconstruction
 - Store RAW data and export to T1s
- Disk and tape storage
- > Tier 1
 - Main tasks in Run1:
 - Re-reconstruction & MC production
 - Long term storage of RAW and MC files
 - Disk and tape storage
- > Tier 2
 - Main tasks in Run1:
 - > MC production
 - > User analysis
 - Only disk storage

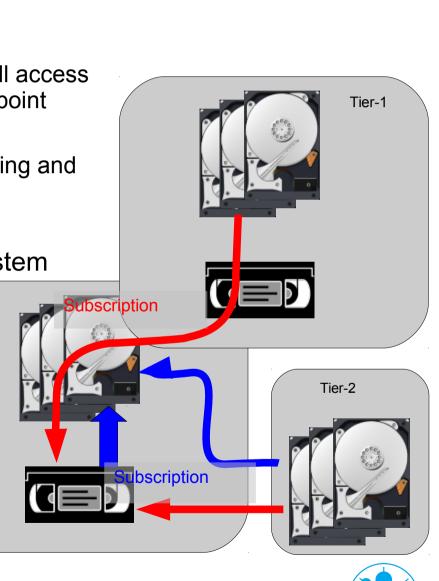
Tape Configuration and Operations in Run1

CMS

- Disk and tape space coupled through HSM
 - Files written to tape automatically (immediately or as soon as possible)
 - Disk (usually) gets flushed from disk when space is needed on buffer disks
- Staging form tape: 3 cases
 - On demand: when file gets requested
 - Through SRM request
 - In practice often by ticket to site
- > Pinning on disk: 2 cases
 - Through SRM commands
 - Again using tickets

Implications of Run1 Setup

- Strict coupling of processing and tape archival of output
 - Processing always had to happen at the archiving location
 - Limiting flexibility where to run
- Limited Tier-1 access for analysis users
 - No easy way to figure out what files are on disk
 - Uncontrolled tape staging needs to be avoided
 - CMS allowed only "expert users" to run at Tier-1 using VOMS role tlaccess
- Difficult to include Tier-1 sites into AAA data federation
 - Files need to be on disk for remote access
 - Requires an easy way to determine what is on disk


Solution: Separation of disk and tape archiving at Tier-1s

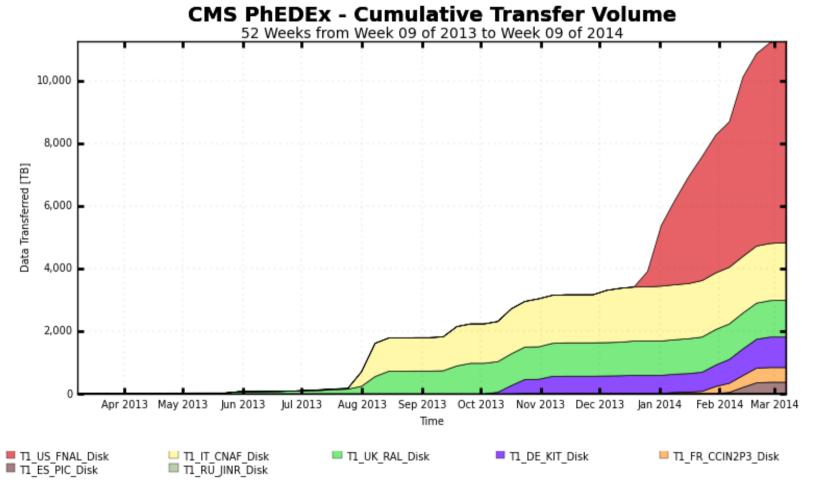
Disk Tape Separation

Basic concept

- Separation into two logical parts
 - Disk endpoint: no automated tape migration, all access from CPU and AAA data federation to this endpoint
 - Archive: automatic tape migration, only data management system can access data for reading and writing
- Transition from disk to tape becomes a Subscription in the data management system
- Implementation at the sites
 - Two independent storage systems
 - Split namespace

Technical Implementation

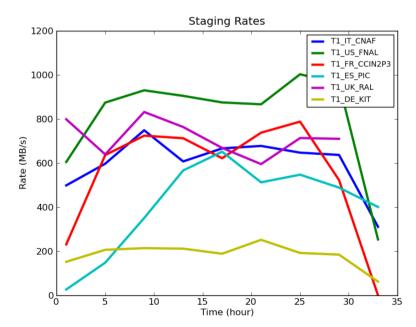
- Sites free to choose the most suitable solution for their storage systems
- > Different storage instances
 - CERN: CASTOR for tape and EOS for disk
 - FNAL: Two dCache instances (+ EOS for user data)
 - JINR: Only dCache disk atm, plans another dCache instance for tape
- > Two independent namespace trees on the same storage
 - RAL: CASTOR
 - KIT, CCIN2P3, PIC: dCache
 - CNAF: GPFS with StoRM
- Transfers between the two areas managed with the standard WLCG service: FTS



Population of new Disk Endpoints

- Pioneered by RAL in April 2013, completed at FNAL in March 2014
- > New disk endpoints populated with over 10 PB of data during the migration

Total: 11,257 TB, Average Rate: 0.00 TB/s



Commissioning of Sites and Transfer System

- Change site configuration to interact with Disk endpoint only
 - Mapping of Logical File Name (LFN) to URL via Trivial File Catalog (TFC)
 - Jobs read from/write to disk endpoint only
- Introduce additional transfer links in the transfer system
 - Connect new Tier-1 disk endpoints to other disk endpoints and tape endpoints
- Verification of functionality by test workflows

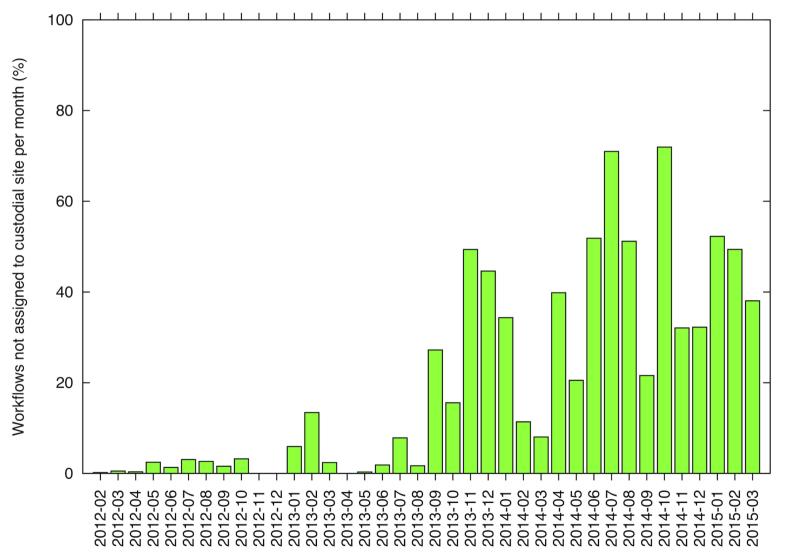
Some recent tape staging tests:

Site	Expected Rate (MB/s)	Achieved Rate (MB/s)
FNAL	650	~900
CNAF	210	~630
JINR*	150	*
KIT	150	~200
RAL	135	~700
IN2P3	135	~650
PIC	75	~500

* Tape at JINR to be commissioned

All tape rates well above needs

- Processing can start immediately
 - No need to wait for creation of tape families at archival site
- > Workload can run at any Tier-1 site
 - No restriction to run at archiving Tier-1 location
- Subscription to tape can be delayed
 - Allows for check of results
 - Cleaning garbage from disk much easier than from tape
- > All files on disk endpoint get published through AAA data federation
 - Allows for remote access
 - Fraction of data processing can run without local subscription
- Tier-1 sites can be opened for analysis jobs
 - Jobs can only access files on disk endpoint


Christoph Wissing | Page 9

Example: Flexibility in DIGI-RECO Workflow Assignment

50% or more get assigned to other site than archiving (=custodial) site after separation of disk and tape resources at Tier-1 sites

Christoph Wissing | Page 10

Summary

- In Run1 tape resources strictly coupled to local Tier-1 disk resources
 - Restricted assignment of Tier-1 workflows to archiving site
 - Prevented analysis jobs from being run at Tier-1 sites
 - Enforced tape family creation before start of actual processing
- Effort to separate disk and tape resources
 - Run separate storage instances for disk and tape
 - Separation through different trees in the namespace
 - Tape reading/writing becomes a subscription in the data management system
- Big gain in flexibility
 - Restriction from Run1 resolved

