

BSM Higgs Physics at the CMS Experiment

Somnath Choudhury

for the CMS collaboration

21st DAE – BRNS High Energy Physics Symposium 2014 8 – 12 December 2014, Guwahati (India)

DESY

Outline

- The BSM Higgs Sector
- LHC and CMS detector
- MSSM Higgs searches
- LFV Higgs Decays
- Invisible Higgs Decays
- Summary and Outlook

Higgs is a journey, not a destination

Great achievement to a four decade long quest A Higgs-like state pinned down at 125 GeV mass

Somnath Choudhury (DESY)

- We know it exists! Phys. Lett. B 716 (2012) 30
- We know its a boson.
- We know its mass : CMS PAS HIG-14-009

 $m_H(\text{CMS}) = 125.03 \ ^{+0.26}_{-0.27} \text{ (stat)} \ ^{+0.13}_{-0.15} \text{(syst)}$

- We have strong evidence that it couples to fermions Nat. Phys. 10 (2014) 557 Couplings are determined within 15 to 20% accuracy, leaving room for BSM physics
- We have reasons to believe that it is a spin 0 CP even object
 Phys. Rev. D 89 (2014) 092007
- We know it's a Higgs boson!

Is this **THE Higgs** boson (of the SM) or is it just **A Higgs** boson?

Somnath Choudhury (DESY)

Run I searches covered a large range of BSM Higgs boson signatures.

LHC is the discovery machine
 the adventure in the TeV energy regime has just begun

BSM Higgs Sector

Lepton Flavour Violating Higgs Decays

Invisible Higgs Decays

MSSM / 2 HDM

Accelerator, Detector and Physics Objects

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

Somnath Choudhury (DESY)

- 3.8 T superconducting solenoid envelop:
- Tracker (silicon pixel and strip detectors) |η| < 2.5
- ECAL (PbWO₄ crystals)
- HCAL (brass/scintillator samplers)

Barrel |η| < 1.48 Endcap 1.48 < |η| < 3.0

 Muon Chambers – gas ionization detectors embedded in steel return yoke outside the solenoid, |η| < 2.4 Drift Tubes, Cathode Strips and Resistive Plate Chambers

 \Rightarrow Event description in form of mutually exclusive particles

- \Rightarrow identification of all stable particles produced in the event
- ⇒ combining capabilities of each sub-detector most precise measurement of the energy and direction for each particle

⇒ individual measurements combined by a geometrical linking algorithm, e.g. extrapolating a charged-particle track into ECAL and HCAL particle ID on blocks of linked elements

Physics object reconstruction utilises this technique, excellent performing even at high pileup

Higgs in MSSM / 2HDM

125 GeV Higgs : Interpretation on MSSM

The mass value 125 GeV is rather large for the MSSM light h boson

Maximizing M_h is maximizing the radiative corrections at 1-loop level

The stop mass scale $M_{SUSY} \sim 1 \text{ TeV}$

M. Carena et. al., arXiv:1302.7033 [hep-ph]

A new MSSM m_h benchmark scenario introduced – consistent with H(125)

• In MSSM coupling to down-type fermions enhanced for $\tan \beta \gg 1$.

- Interesting decay channels:
 - H o au au ($\hat{\kappa}_{ au} = 0.84 \pm ^{0.19}_{0.18}$)
 - $H \rightarrow bb$ ($\hat{\kappa}_b = 0.74 \pm 0.33_{0.29}^{0.33}$)
- Interesting production modes:

CMS-PAS-HIG-14-009

Mass of τ lepton pair reconstructed via a **Likelihood technique**, based on:

- τ decay kinematics
- Compatibility of reconstructed E_T^{miss} with neutrino hypotheses

Neutral MSSM Higgs

Somnath Choudhury (DESY)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13021PaperTwiki

95% CL upper bound on cross-section x $\mathscr{B}r(\Phi \rightarrow \tau \tau)$ – based on the mass shape of $m_{\tau\tau}$ distribution mapped to m_A – tan β plane (4FS + 5FS)

Uncertainties -

- > Theory
- Normalization (Lumi, Efficiencies)
- Shape (Energy scale)

This excludes previously unexplored region: now reaching as low as tan $\beta \sim 3.9$ at m_A = 140 GeV

charged Higgs boson search in:

CMS PAS HIG-14-020

tt-bar \rightarrow H[±]Wbb process for charged Higgs boson mass lighter than Δ m(top-bottom) pp \rightarrow H[±]tb process for charged Higgs boson mass heavier than Δ m(top-bottom)

CMS PAS HIG-14-011

- Pseudoscalar heavy Higgs boson A decaying into a Z boson and a light Higgs boson h
- Z decaying into lepton pair (electrons or muons) and h into a pair of b-quarks
- h assumed SM-like Higgs boson with 125 GeV mass
- Solution Section Sect
- Results further interpreted in
 2 Higgs Doublet Model scenario

Lepton Flavour Violating Higgs Decays

LFV Higgs Decays

- ► Decay modes in $H \rightarrow \mu \tau_e$ and $H \rightarrow \mu \tau_{had}$ channel
- ➤ Dominant background in the H→µτ_e channel is Z→τ_µτ_e
- ➤ Dominant background in the H→µτ_{had} channel from jets faking taus in W+jets, QCD multi-jet and tt+jets events
- Sensitivity is an order of magnitude better than existing indirect limits
- Slight excess of signal events observed with a significance of 2.5σ

▶ p-value of excess at m_H =126 GeV is 0.007

CMS PAS HIG-14-005

$$B(H \to l^{\alpha} l^{\beta}) = \frac{\Gamma(H \to l^{\alpha} l^{\beta})}{\Gamma(H \to l^{\alpha} l^{\beta}) + \Gamma_{SM}}$$
$$\Gamma(H \to l^{\alpha} l^{\beta}) = \frac{m_h}{8\pi} (|Y_{l^{\beta} l^{\alpha}}|^2 + |Y_{l^{\alpha} l^{\beta}}|^2)$$

- Constraint placed on B(H →µτ) < 1.57% at 95% CL
- The best fit branching fraction is B(H \rightarrow µ τ) = (0.89^{+0.40}_{-0.37})%
- The limit is subsequently used to constrain the $Y_{\mu\tau}$ Yukawa coupling

Invisible Higgs Decays

Invisible Higgs Decays

Invisible Higgs Decays

Summary & Outlook

- Higgs Boson @ 125 GeV avenue of great interest in BSM
- MSSM Higgs parameters significantly constrained with H→ττ (different MSSM benchmark scenarios)
- □ LFV Higgs decays show slight excess at 125 GeV
- Invisible Higgs decays connecting Dark Matter
- NMSSM Higgs searches underway with full run-1 data
- No signal of BSM Higgs spotted so far at LHC
- A robust program for BSMHiggs physics with run-2 data