

Measurements of the Higgs Boson at the LHC and Tevatron

Somnath Choudhury (for the ATLAS, CMS, DØ and CDF collaborations)

44th International Symposium on Multiparticle Dynamics 8 – 12 September 2014, Bologna (Italy)

Outline

- LHC, Tevatron & Detectors
- Higgs Observation in Boson and Fermion decay
- Higgs Combination
- Higgs Measurements Mass, Coupling, Spin/Parity Width, Cross-section
- Summary LHC, Tevatron

The LHC

The Tevatron

The Tevatron accelerator

Proton-Antiproton collider Tevatron Run II: (2002-2011), $\sqrt{s} = 1.96$ TeV A decade of successful running delivered ~10 fb⁻¹ of luminosity for physics to CDF and DØ, shut down September 2011

Somnath Choudhury (DESY)

CMS & ATLAS detector

Detector subsystems

Vertex Detector Silicon Tracker Electromagnetic Calorimeter Hadronic Calorimeter

Muon System

DØ & CDF detector

Volume 712, Issue 3, 6 June 2012

ISSN 0370-2693

http://www.elsevier.com/locate/physletb

SM Higgs Sector @ LHC

Higgs Observation

Higgs Observation @ CMS

▶ 6.7σ significance @125 GeV observed in H→ZZ*→41 golden decay mode

Local p-value

10^{-17 L}

110

120

130

140

150

160

170 180

 $m_{\rm H} \, ({\rm GeV})$

$H\to\gamma\gamma$

 $H \to ZZ^* \to 2e2\mu$

Higgs Observation @ ATLAS

H→ZZ*→4ℓ signal observed with a significance of 8.1σ at m_H = 125.36 GeV
Measured signal strength μ=1.44 ^{+0.40}_{-0.33} in ZZ*→4ℓ and 1.17±0.27 in γγ mode

$$H \rightarrow \gamma \gamma$$

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

 $H \rightarrow ZZ^* \rightarrow 4\mu$

Higgs Observation @ Tevatron

Combined searches for WH→lvbb, ZH→llbb, and WH+ZH→METbb using full 9.7 fb⁻¹ Tevatron dataset Excess of data over the background seen with most significance in the mass range 120≤ m_H ≤135 GeV 1st Indication of Higgs–Fermion coupling

2.8 σ significance at m_H=125 GeV

Higgs - Lepton Coupling @ ATLAS

Excess > 4σ observed over m_H 110 -130 GeV
Best fit signal strength 1.4 ^{+0.5}_{-0.4} for m_H=125 GeV
Observed Significance 4.1σ for m_H=125 GeV
A clear indication of Higgs - Lepton coupling

$H \to \tau\tau$

Higgs - Lepton Coupling @ CMS

$H\to\tau\tau$

Higgs in Fermion Decays @ LHC

Strong evidence for the direct coupling of the 125 GeV Higgs boson to fermions, with an observed (expected) significance of 3.8σ (4.4 σ)

0.2

0.4

0.6

0.8

1.2

1.4

1.8

μ

1.6

Higgs with Top Quarks

- ttH important to probe directly top-Higgs Yukawa coupling
- Interested in ttH, H to anything with large enough BR $H \rightarrow bb$ is the most attractive here for SM $m_H = 125 \text{ GeV}$
- Categories events based on number of jets and b-tagged jets

(tot) (stat)

arXiv:1408.1682 [hep-ex]

5

Higgs Combination

Higgs Combination @ CMS

Higgs Combination @ ATLAS

Higgs Combination @ Tevatron

- > Combined searches by CDF and D0 for the SM Higgs boson in the mass range 100–200 GeV for bb, $\tau\tau$, $\gamma\gamma$, ZZ and WW modes
- A significant excess of events observed in the mass range between 115 and 140 GeV with local significance at m_H=125 GeV corresponding to 3.0σ

Higgs Mass

High Resolution Mass @ CMS

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ invariant mass distribution at CMS

Somnath Choudhury (DESY)

High Resolution Mass @ ATLAS

Higgs Mass

Higgs Coupling

Higgs Coupling @ CMS

Results within 1σ of Standard Model prediction

Somnath Choudhury (DESY)

Mass & Coupling with $H \rightarrow \tau \tau$

Scan of $-2\Delta lnL$, as function of m_H

background-only hypothesis includes the pp \rightarrow H(125 GeV) \rightarrow WW process

Likelihood scan as a function of κ_V and κ_f All nuisance parm. profiled for each point

 $pp \rightarrow H(125 \text{ GeV}) \rightarrow WW$ process <u>added as</u> <u>a signal</u> for vector boson coupling sensitivity

Higgs Coupling @ ATLAS

Somnath Choudhury (DESY)

Higgs Coupling @ Tevatron

Phys. Rev. D 88, 052014 (2013)

Higgs Spin / Parity

Higgs Spin & Parity @ LHC

‴z'

Ζ

 Φ_1

 μ^+

 θ_1

 L_1

Х

 Φ

 $\theta_2 e^{-1}$

р

e⁺

·0*1

Matrix Element Likelihood Analysis

MELA =
$$\left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

Masses of dilepton pairs and five angles fully defining a four-lepton configuration in their centre-of-mass frame

Somnath Choudhury (DESY)

Higgs Spin & Parity @ CMS

Discriminant for production and decay of different Higgs J^P state

$$\mathcal{D}_{J^{p}} = \frac{\mathcal{P}_{\rm SM}}{\mathcal{P}_{\rm SM} + \mathcal{P}_{J^{p}}} = \left[1 + \frac{\mathcal{P}_{J^{p}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\rm SM}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

Statistically equivalent to the 2D analysis of m_{4l} and K_D

 $\mathcal{D}_{\rm bkg} \,=\, \mathcal{P}_{\rm sig} \dot{/} (\mathcal{P}_{\rm sig} + \dot{\mathcal{P}}_{\rm bkg})$

Hypotheses of a pseudoscalar and all tested spin-1 boson hypotheses excluded at 99% CL or higher Consistency with SM scalar boson

Higgs Spin & Parity @ CMS

Using full angular information defining 4 lepton system

- For each hypothesis create kinematic discriminant for SM vs alternative hypothesis
- Perform 2D fit of hypothesis discriminant versus background discriminant and perform hypothesis test

Several J^P hypotheses have been tested Consistency with the SM scalar boson

Higgs Spin & Parity @ ATLAS

Higgs Width @ CMS

Off-shell Higgs production sizeable at high ZZ mass
 ~7.6% of the total cross-section for m_{ZZ} > 2M_Z
> Destructive interference between gg→H→ZZ and gg→ZZ

Ratio of **on-shell** and **off-shell** production cross-section gives a direct handle to constrain the total width (taking into account interference)

On shell and off shell production in ZZ: $\sigma_{gg \to H \to ZZ}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H}$ $\sigma_{gg \to H \to ZZ}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{(2m_z)^2}$

On-shell and off-shell cross-section expressed as a function of signal strength by scaling the couplings

• On-shell

cross section constrained by $H \rightarrow ZZ \rightarrow 41$ search $\mu=\sigma/\sigma_{SM} = 0.93^{+0.26}_{-0.24}$ (Expectation of $1.0^{+0.27}_{-0.24}$)

• Off-shell

cross section is constrained by $H \rightarrow ZZ \rightarrow 4l$ and $H \rightarrow ZZ \rightarrow 2l2v$ final states

Higgs Width @ CMS

<u>4l final state</u>

Using the baseline $H \rightarrow ZZ$ selection strategy

- Exploiting full reconstructed final state to separate gg→ZZ from qq→ZZ at high mass
- Using angular discriminant as in the 4l baseline search
- Signal extracted by 2D fit in the mass and kinematic discriminant

<u>212v final state</u>

Requiring a di-lepton and high missing E_{T}

Mass shape fit in different jet categories

- Observed limit of 5.4 x SM corresponding to ~ 22 MeV @ 95% CL
- Sensitivity exceeds all expectations enhancing the LHC role of a Higgs factory in next years

Physics Letters B 736, 64 (2014)

Higgs Width @ ATLAS

Somnath Choudhury (DESY)

Higgs Cross-section

ttH

Somnath Choudhury (DESY)

arXiv:1407.4222 [hep-ex]

Sensitive to new physics in the context of production loop and properties

Jet multiplicity: sensitive to relative rates of production modes (ggH, VBF/VH/ZH, ttH)

 $\Delta \phi_{jj}$: for ggH and VBF, sensitive to the Higgs boson spin and CP

Summary & Outlook

0.10

0.00

0.05

0.15

expected uncertainty