

Top quark measurements in CMS

Nazar Bartosik (Deutsches Elektronen-Synchrotron, Hamburg) on behalf of the CMS collaboration

QCD@LHC 2014 Suzdal, Russian Federation

27.08.2014

Outline

- Introduction
- Top pair cross sections
 - top pair, ttbb/ttjj, ttH, ttW/Z
 - SM parameter constraints: $\boldsymbol{\alpha}_{s}$, m_{t}^{pole}
- Single top cross section
- Top quark properties:
 - top mass, spin correlations, $|V_{tb}|$, charge asymmetry, polarisation
- Beyond the Standard Model
 - FCNC

Top quark

- **The heaviest SM particle:** $m_t = 172.2 \pm 0.8$ GeV (CMS combination)
- Life time (10⁻²⁵s) shorter than hadronisation time scale (10⁻²⁴s) bare quark properties accessible: mass, $|V_{tb}|$, spin, charge,...
- Top quark mass important Standard Model parameter
- The Higgs boson preferentially couples to the top quark
- **Can be used for testing the SM** consistency of m_H, m_W, m_t _____ pQCD precision tests
- Main background in many BSM searches

Top quark production

Top pair decay signatures

Section

Top pair production

Top pair inclusive cross section

arXiv:1407.6643

b-jet

e.u

dileptonic channel

2 oppositely charged isolated high-pT leptons: ee, eµ, µµ – separately

- \geq 2 jets, \geq 1 b-tagged jet
- DY and non-W/Z background data estimated

Main systematics: JES, model uncertainties

 $\sigma_{t\bar{t}} = 239.0 \pm 2.1 \text{ (stat.)} \pm 11.3 \text{ (syst.)} \pm 6.2 \text{ (lum.) pb}$

e+T, µ+T channel

Nazar Bartosik

exactly I isolated lepton e/μ

exactly I reconstructed hadronic \mathbf{T}

Main background: semileptonic tt I jet misidentified as \mathbf{T}

 $\sigma_{t\bar{t}} = 257 \pm 3 \,(\text{stat}) \pm 24 \,(\text{syst}) \pm 7 \,(\text{lumi}) \,\text{pb}$

Lepton universality satisfied

200

100

150

200

450

50 400 45 m_{top} [GeV]

300

250

350

Top pair inclusive cross section

ATLAS+CMS combination of 7TeV and 8TeV measurements

Correlated uncertainties taken into account

Good agreement with theory predictions

Nazar Bartosik

Top pole mass and $\alpha_s(m_Z)$

PLB 728 (2013) 496

Top pair production inclusive cross section used to extract:

top pole mass with $\alpha_s(m_Z)$ constrained $\alpha_s(m_Z)$ with top m_t^{pole} constrained

The first measurement of $\alpha_s(m_Z)$ from ttbar + first full NNLO QCD

Main systematics: measured ttbar cross section and PDF $\hat{g}_{s^{*}}$

Results: (NNPDF2.3)

 $m_t^{pole} = 176.7^{+3.0}_{-2.8} \text{ GeV}$ $\alpha_s(m_Z) = 0.1151^{+0.0028}_{-0.0027}$

ABM11 has significantly smaller gluon density and α_s

Top pair differential cross sections

Enhance sensitivity to new physics in tails of the distributions Important test of SM predictions.

- Comparison to different MC generators, theory calculations
- ~5-10% precision per bin
- Dominant systematic: signal modelling
- Good description of data
- Top quark p_T spectrum harder in MC predictions.

Better description by Approx. NNLO

Nazar Bartosik

Top quark measurements in CMS

Top pair with additional jets

CMS PAS TOP-12-041

- Large fraction of ttbar produced with hard jets from ISR/FSR
- Large uncertainty from radiation modelling in MC
- Tuning parameters for MC from measurements
- Background to many BSM searches
- Cross section as a function of additional jet multiplicity with 3 jet p_T thresholds
- Fraction of events without additional jets with threshold on 1 st, 2nd jet p_T , H_T
- Differences between theory predictions at low p_T region

Nazar Bartosik

Section

Associated tt+X production

Nazar Bartosik

Top quark measurements in CMS

tt+tt, tt+bb

Nazar Bartosik

Top quark measurements in CMS

ttH production

arXiv:1408.1682

Probe of the top quark Yukawa coupling

Test of t-H coupling

Can be enhanced in some NP scenarios

Analysis separately optimised for each of the H decay modes:

 $H \rightarrow bb, \tau_h \tau_h, \gamma \gamma, WW, ZZ$

Assumed $m_H = 125.6 \text{ GeV}$

Observed excess equivalent to 2σ upward fluctuation

Results don't change significantly with m_H variation around 125 GeV

tt+W/7

Measurement of couplings to bosons

- **Background for BSM searches**
- Measurement in 3 channels:
 - 2 leptons: ttW 3 or 4 leptons: ttZ

Channels used

 $2\ell + 3\ell + 4\ell$

Channels used	Process	Cross section	Significance
2ℓ	tīW	$170^{+90}_{-80}({ m stat})\pm70({ m syst}){ m fb}$	1.6
3ℓ + 4ℓ	tīZ	$200^{+80}_{-70}({ m stat})^{+40}_{-30}({ m syst}){ m fb}$	3.1
2ℓ + 3ℓ + 4ℓ	$t\bar{t}W+t\bar{t}Z$	$380^{+100}_{-90}({ m stat})^{+80}_{-70}({ m syst}){ m fb}$	3.7

Measured cross sections compatible with SM predictions within uncertainties.

ttW cross section

 170^{+110}_{-100} (total) fb

Nazar Bartosik

200

100

0

100

200

300

400

500

600 $\sigma_{t\bar{t}W}$ [fb]

Section

Single top

Single top: t-channel

JHEP 06 (2014) 090 Direct probe of Wtb coupling

Test of SM predictions, search for NP

Constraint on u/d PDF models via σ_t/σ_{tbar} ratio

Leptonic decay mode (including $\tau \rightarrow \mu/e$)

Signal region at high $|\eta|$ of light jet

 $\sigma_{t-ch.} = 83.6 \pm 2.3 \text{ (stat)} \pm 7.4 \text{ (syst) pb.}$ $R_{t-ch.} = \sigma_{t-ch.}(t) / \sigma_{t-ch.}(\bar{t}) = 1.95 \pm 0.10 \text{ (stat)} \pm 0.19 \text{ (syst).}$

Combined with 7 TeV result to determine $|V_{tb}|$

 $|V_{\rm tb}| = 0.998 \pm 0.038$ (exp.) ± 0.016 (theo.)

No deviations from the SM observed

Single top: s-channel

CMS PAS TOP-13-009

- Smallest cross section at LHC
- Sensitive to new physics
- **Leptonic decay mode** (including $\tau \rightarrow \mu/e$)
- Multivariate analysis based on Boosted Decision Trees
- Inclusive cross section: e, μ combined
 - Upper limit: $\sigma_{s-ch} < 11.5 (17.0, 9.0) \text{ pb}$ observed(expected with SM signal, expected with bkg only)
 - 2.1 (3.1, 1.6) times the SM

Single top: tW channel

PRL 112 (2014) 231802

Dilepton final state

Dominated by ttbar background

Multivariate analysis based on Boosted Decision Trees

Signal and 2 control regions defined by jet/b-tagged jet multiplicity

 6.1σ significance observed

 σ_{tW} = 23.4 ± 5.4 pb

 $\sigma_{tW} = 22.2 \pm 0.6 \pm 1.4 \text{ pb} \text{ (appr. NNLO)}$

|V_{tb}| extracted:

$$|V_{\rm tb}| = \sqrt{\sigma_{\rm tW}/\sigma_{\rm tW}^{\rm th}} = 1.03 \pm 0.12 \,({\rm exp}) \pm 0.04 \,({\rm th.})$$

Results in agreement with SM predictions

Top quark properties

Top mass: lepton+jets

CMS Preliminary, 19.7 fb⁻¹, $\sqrt{s} = 8$ TeV, I+jets

Top mass: lepton+jets

CMS PAS TOP-14-001

Ideogram method for simultaneous determination of m_t, jet energy scale (JSF)

Likelihood fit of m_t from the kinematic fit and reconstructed m_W

Calibrated using MC:

7 simulations of $m_t \times 3$ values of JSF

Result from 2D fit:

$$m_{\rm t} = 172.04 \pm 0.19 \,({\rm stat.+JSF}) \pm 0.75 \,({\rm syst.}) \,{\rm GeV},$$

JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

Result from ID fit (JSF = 1.0) cross check

 $m_{\rm t} = 172.66 \pm 0.11 \, ({\rm stat.}) \pm 1.29 \, ({\rm syst.}) \, {\rm GeV}$

Larger systematic uncertainty from JES uncertainty (1.17 GeV)

Nazar Bartosik

Top mass: full hadronic

CMS PAS TOP-14-002

Selection: full hadronic

 \geq 6 jets (exactly 2 b-tagged)

Same ideogram method as in lepton+jets

kinematic fit: m_W =80.4 GeV, $m_t = m_{tbar}$

simultaneous determination of m_t and JSF 7 simulations of $m_t \times 5$ values of JSF

Result from 2D fit:

$$m_{\rm t} = 172.08 \pm 0.36 \,({\rm stat.+JSF}) \pm 0.83 \,({\rm syst.}) \,{\rm GeV},$$

JSF = 1.007 ± 0.003 (stat.) ± 0.011 (syst.).

Result from ID fit (JSF = 1.0) cross check $m_{\rm t} = 172.59 \pm 0.27 \,(\text{stat.}) \pm 1.05 \,(\text{syst.}) \,\text{GeV}$

Results consistent with values obtained from lepton+jets channel

Nazar Bartosik

Kinematic dependences well described by MC for most observables

Nazar Bartosik

Top quark measurements in CMS

Top mass: CMS combination

CMS PAS TOP-14-001

2012 result in lepton+jet channel combined with results on 2010 (dileptonic, semileptonic), 2011 (dileptonic, semileptonic, full hadronic) data

Most systematics assumed to be fully correlated between 5 additional analyses

Experimental uncertainties correlated between analyses using same data

JSF uncertainty treated as uncorrelated

X² = 4.1/5 DOF (54% CL)

 $m_{\rm t} = 172.22 \pm 0.14 \, ({\rm stat.}) \pm 0.72 \, ({\rm syst.}) \, {\rm GeV}$

Consistent with 2014 World combination: LHC + Tevatron

Top charge asymmetry

 A_{c}

Top branching fraction and V_{tb}

PLB 736 (2014) 33 $BR(t \rightarrow Wb)/BR(t \rightarrow Wq)$ [q=b,s,d] measured in dilepton channel

Depends on $|V_{tb}|$ and $\Gamma(t)$

D0 reported tension with the SM prediction: $\mathcal{R} = 0.86^{+0.041}_{-0.042}$ (stat) ± 0.035 (syst)

Parametrised in terms of b-tag multiplicity, b-tagging and misidentification efficiencies

Best fit: $\mathcal{R} = 1.014 \pm 0.003 \text{ (stat)} \pm 0.032 \text{ (syst)}$ **Lower limit:** $\mathcal{R} > 0.955 \longrightarrow |V_{\text{tb}}| > 0.975 \text{ (95\% CL)}$

Combined with the t-channel single top production cross section to determine Γ_t :

 $\Gamma_t = 1.36 \pm 0.02 \, (\text{stat})^{+0.14}_{-0.11} \, (\text{syst}) \, \text{GeV} \quad (1.29 \text{ in SM})$

Results agree with theoretical expectations

Spin correlations, polarisation

PRL 112 (2014) 182001

Information about spin of the top quark transferred directly to decay products

Can be altered by couplings to new particles in BSM models

Asymmetry variables defined for polarisation: $A_P = \frac{N \left[\cos(\theta_{\ell}^{\star}) > 0\right] - N \left[\cos(\theta_{\ell}^{\star}) < 0\right]}{N \left[\cos(\theta_{\ell}^{\star}) > 0\right] + N \left[\cos(\theta_{\ell}^{\star}) < 0\right]}$

and spin correlation discrimination:

$$A_{\Delta \phi} = \frac{N(\Delta \phi_{\ell^+ \ell^-} > \pi/2) - N(\Delta \phi_{\ell^+ \ell^-} < \pi/2)}{N(\Delta \phi_{\ell^+ \ell^-} > \pi/2) + N(\Delta \phi_{\ell^+ \ell^-} < \pi/2)}$$

Asymmetry	Data (unfolded)	MC@NLO	NLO (SM, correlated)
$A_{\Delta\phi}$	$0.113 \pm 0.010 \pm 0.006 \pm 0.012$	0.110 ± 0.001	$0.115^{+0.014}_{-0.016}$
A_P	$0.005 \pm 0.013 \pm 0.014 \pm 0.008$	0.000 ± 0.001	N/A

Indication of presence of spin correlation

No indication of polarisation, in agreement with NLO SM prediction

Nazar Bartosik

Section

Beyond the Standard Model

Flavour changing neutral current

CMS PAS TOP-11-028 Transition from a quark to a differentflavour quark of the same charge:

- forbidden at tree level in the SM
- strongly suppressed in higher order diagrams
- can be enhanced in NP models
- Search in trilepton $t \rightarrow Zq+Wb$ decays Z and W decay leptonically
- No evidence of FCNC found
- Combination with 7 TeV result excludes $BR(t \rightarrow Zq) > 0.05\%$ (95% CL)

Summary

- CMS has rich program for quark related analyses
- Provide precise test of the Standard Model
- Allow searches for many NP effects
- All analyses of top quark cross sections and properties show good agreement with SM predictions
- Disagreement with NLO predictions in top quark p_T distribution. Better agreement with approx. NNLO calculations
- Most precise top mass obtained from the combination of 2010-2012 CMS measurements: $m_t = 172.2 \pm 0.1 \pm 0.7$ GeV
- Many results on 8 TeV data approaching publication
- Complete list of public CMS results at a dedicated page