Measurement of double differential Drell-Yan and associated jets cross section at low and high invariant masses in proton-proton collisions at $\sqrt{s} = 7$ TeV

Samantha Dooling

On behalf of the CMS Collaboration 30^{th} April 2014

DIS 2014

CMS-PAS-FSQ-13-003

Content

- Introduction to the Drell-Yan process and Resummation
- Motivation
- Event Selection
- Cross Section Measurement
- Results
- Summary & Conclusions

Introduction

The Drell-Yan (DY) process:

 $q \bar{q}$ annihilation into a virtual photon or Z boson decaying into two leptons

 $\widehat{\sigma}$

Х

Motivation

DY dilepton pair transverse momentum distribution

▷Small p_T : resummed higher-order contributions dominate ▷Large p_T : perturbative QCD corrections at fixed-order

4

Motivation

DY dilepton pair transverse momentum distribution

▷Small p_T : resummed higher-order contributions dominate ▷Large p_T : perturbative QCD corrections at fixed-order

Motivation

DY dilepton pair transverse momentum distribution

▷Small p_T : resummed higher-order contributions dominate ▷Large p_T : perturbative QCD corrections at fixed-order

6

Event Selection

- Two opposite charged muons
- ${\bf O}$ Muons have to be isolated to ensure they emerge from an electroweak process

$$\left|\eta_{\mu}^{lead, sublead}\right| < 2.1$$

 $p_{T}^{lead} > 20 \ GeV$, $p_{T}^{sublead} > 10 \ GeV$

- Jets are defined by the anti- k_{T} algorithm (R=0.5)
- **O** Jet $p_{T} > 30 \text{GeV}$ and $|\eta| < 4.5$
- Separate the jets from the two muons by $\Delta R > 0.5$

Drell-Yan Measurement

- Measurement is performed in bins of the dimuon invariant mass (30-1500GeV)
- Investigate transverse momentum spectra as a function the Drell-Yan lepton pair mass to change the scale
- Relevant Background contributions: ttbar, QCD, $Z \rightarrow \tau \tau$, W+jets, diboson
- Background is subtracted from data events
- **O** Data is corrected to stable-particle level
- Systematic Uncertainties: Unfolding, JEC, Pileup Reweighting, Efficiency Correction, Background Estimation
- Cross sections are normalized by cross section in the Z Peak region (60-120GeV) to reduce systematics

Cross Section Measurement

- **O** Double differential cross section in p_{T} and mass
- **O** Five bins in invariant mass
- **O** Inclusive Drell-Yan production

• Drell-Yan production in association with at least one jet

O Drell-Yan production in association with at least two jets

Data is compared to Monte Carlo predictions

Results $d^2\sigma/dm^{\mu\mu}dp_T^{\mu\mu}$

Inclusive

CMS-PAS-FSQ-13-003

Monte Carlo Comparison

• dimuon $\eta^{\mu\mu}$ • Forward Drell-Yan production $|\gamma| > 2.5$

$$\boldsymbol{\eta}^{\mathrm{DY}} = \boldsymbol{\eta}^{\mathrm{(}}(\boldsymbol{\mu}_{1}) + \boldsymbol{\eta}^{\mathrm{(}}(\boldsymbol{\mu}_{2})$$

• Drell-Yan production in association with at least one jet and at least two jets

 $|\Delta y(\mu\mu, j_1)|$

Jet Multiplicity

Average Number of Jets in Δy of DY and the leading jet Forward DY production $(|\gamma| > 2.5)$

30.04.2014

- Increase of average jet multiplicity
- Calculations to higher order $O(\alpha_{s})$ show good description

Summary

Double differential cross section in mass and

transverse momentum of the dimuon pair (2011 Data, 4.9fb⁻¹)

 \triangleright Normalized cross section for the three production processes (inclusive DY, DY+1jet, DY+2jets)

- Increased sensitivity to soft gluon resummation by using DY + jets
- Soft gluon resummation is well described by parton shower algorithm

• Higher order calculations provide better agreement to data

Backup

Results $d^2\sigma/dm^{\mu\mu}dp_T^{\mu\mu}$

CMS-PAS-FSQ-13-003

DY+1jet

Results $d^2\sigma/dm^{\mu\mu}dp_T^{\mu\mu}$

CMS-PAS-FSQ-13-003

DY+2jets

