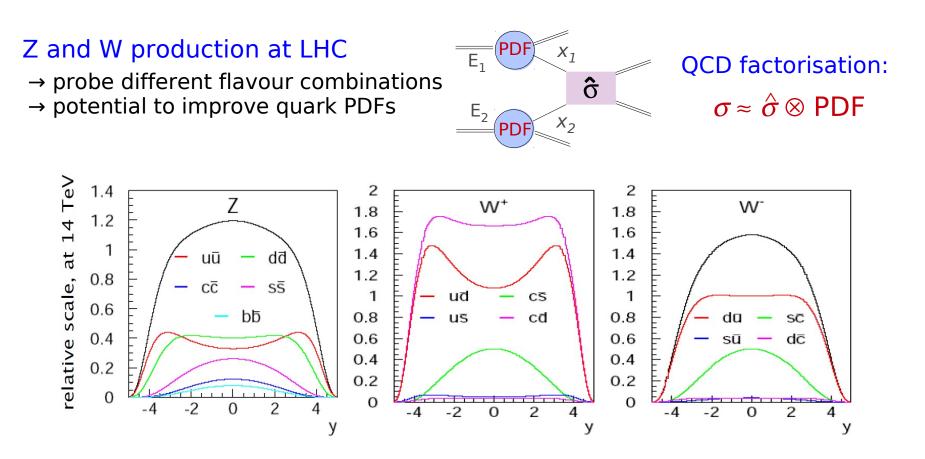

Determination of Strange Quark Distribution Using Recent CMS Measurements on W[±] Production

on behalf of the

collaboration

- \rightarrow Introduction
- \rightarrow CMS W[±] production data
 - \rightarrow W muon asymmetry and W+charm data
 - \rightarrow Impact of W[±] production data on the PDFs
- \rightarrow Summary

R. Plačakytė


DIS, Warsaw, 28th of Apr – 2^d of May 2014

HELMHOLTZ

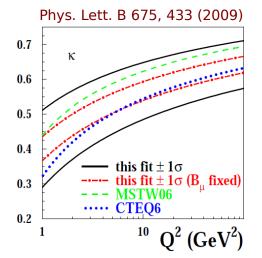
Introduction

Precise knowledge of the PDFs are essential for predictions at the LHC PDFs: one of main theory uncertainties in Higgs production, M_w measurement, etc.

 \rightarrow u and d quarks dominate for W, all flavours contribute to Z

R. Plačakytė

Strange quark density determination



Strange quark density in the proton is still poorly known

→ mainly constrains come from fixed target data (NuTeV, HERMES, NOMAD)

Nucl.Phys. B876(2013) 339 NOMAD measurement $K_s (20 \text{ GeV}^2) = 0.59 \pm 0.019$

$$f_s(Q^2) = \frac{\int_0^1 x \left[\overline{\mathbf{s}}(x, Q^2) + \mathbf{s}(x, Q^2)\right] dx}{\int_0^1 x \left[\overline{\mathbf{u}}(x, Q^2) + \overline{\mathbf{d}}(x, Q^2)\right] dx}$$

\rightarrow LHC Z,W and W+charm data sensitive to strange quark density

The differential ATLAS W^{\pm}, Z data used to measure strange quark density \rightarrow data suggest that light quark sea at low x is flavor symmetric

Phys.Rev.Lett.109(2012)012001

$$r_s = 0.5(s+\bar{s})/\bar{d} = 1.00 \pm 0.20 \exp \pm 0.07 \operatorname{mod}_{-0.15}^{+0.10} \operatorname{par}_{-0.07}^{+0.06} \alpha_s \pm 0.08 \operatorname{th}$$
at Q_0^2 and $x = 0.023$ (starting scale)

→ same results confirmed by the ATLAS W+charm data (obtained from the χ^2 minimisation procedure) arXiv:1402:6263

$$r_s = 0.96 \stackrel{+0.16}{_{-0.18}} \stackrel{+0.21}{_{-0.24}}$$
 at $Q^2 = 1.9 \text{ GeV}^2$

see G. Aad's talk

R. Plačakytė

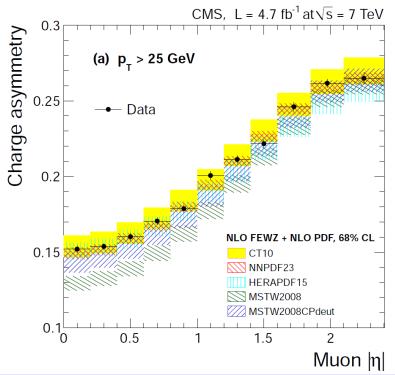
R. Plačakytė

DIS, Warsaw, 28th of Apr – 2^d of May 2014

CMS W lepton charge asymmetry

W lepton asymmetry

- → overall excess of W^+ over W^- due to presents of two valence *u* quarks in the proton
- → probe valence quarks and PDFs rations (u_v , d_v , d/u, d/u_v , dbar/ubar):


CMS W muon asymmetry measurement

- → better resolution for MET using Hadronic Recoil: $u = -MET - \Sigma p_{\eta}^{T}$
- \rightarrow DY sample for normalisation correction
- → binned maximum likelihood fits of MET are used to extract signal (template method)

Muon charge asymmetry:

 $\rightarrow P^{T}_{I}$ >25 and 35 GeV

see A. Khukhunaishvili's talk

 $A_{W} = \frac{W' - W}{W' + W'} \approx \frac{u_{v} - d_{v}}{u_{v} + d_{v} + 2u_{v}}$

arXiv:1312:6283

W+charm measurement at CMS

W+charm data \rightarrow direct sensitivity to the strange quark

Identification:

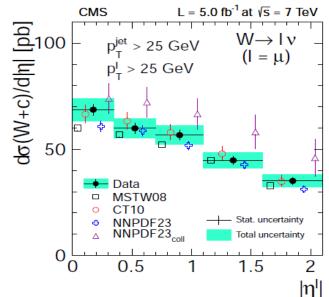
- → W decays to charged leptons (e or μ) and neutrino
- → c: charm-quark jets with p_{jet}^{T} >25GeV, $|\eta_{jet}|$ <2.5 *g* jets identified: secondary vertex $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$ ($D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}$) $D^{*+}(2010) \rightarrow D^{0}\pi^{+}$ ($D^{*-}(2010) \rightarrow \bar{D}^{0}\pi^{-}$) arXiv:2

0000000

arXiv:1310:1138

С

 \overline{c}


00000000

semileptonic decay with well identified muon

Background subtraction:

perform by subtracting the Same Sign (SS) from the Opposite Sign (OS) distributions

Total and differential cross sections $p_1^T > 25 \text{ GeV} (W \rightarrow \mu \nu)$ $p_1^T > 35 \text{ GeV} (W \rightarrow \mu \nu, W \rightarrow e \nu)$ Ratios $(W^+ + cbar)/(W^- + c)$

R. Plačakytė

QCD analysis of CMS W production data

Motivation:

- \rightarrow study the impact of the W production data on valence-quark distributions
- \rightarrow test of joined sensitivity of lepton charge asymmetry and W+c data to the strange content of the proton

- \rightarrow use minimal data input in the PDF fit (HERA I), use most precise CMS data
- \rightarrow theory calculation for W+c production available to NLO QCD : PDF fit performed at NLO
- → HERAFItter framework is used for the PDF fit www.herafitter.org
- \rightarrow NNPDF Bayesian reweighting used for qualitative studies of the data impact on the PDFs

QCD analysis settings

QCD analysis at NLO performed using HERAFitter www.herafitter.org \rightarrow parton evolution in Q² via DGLAP equations as implemented in QCDNUM

Comp.Phys.Com.182:490,2011

Data: HERA I combined inclusive DIS data JHEP 1001:109 (2010) \rightarrow uncertainty treatment follows HERAPDF1.0 prescription

CMS μ asymmetry data (P^T>25 GeV)

→ systematic correlations as covariance matrix

CMS W+charm data (P^T > 35 GeV)

 \rightarrow systematic and statistical correlations as full covariance matrix

Theory: predictions from APPLGRID files obtained with MCFM (NLO)

Starting scale $Q_0^2 = 1.9 \text{ GeV}^2$ m_c = 1.4 GeV, m_b = 4.75 GeV

heavy flavour scheme: general mass variable flavour scheme RT scale $\mu_R^2 = \mu_F^2 = Q^2$ strong coupling $\alpha_s = 0.1176$

 \rightarrow variation of parameters later considered in the PDF uncertainties

R. Plačakytė

Parametrisation

PDF parametrisation at the starting scale ($Q_0^2 = 1.9 \text{ GeV}^2$):

$$\begin{array}{rcl} xg(x) &=& A_g x^{B_g} \cdot (1-x)^{C_g} - A'_g x^{B'_g} \cdot (1-x)^{C'_g}, \\ xu_v(x) &=& A_{u_v} x^{B_{u_v}} \cdot (1-x)^{C_{u_v}} \cdot (1+E_{u_v} x^2), \\ xd_v(x) &=& A_{d_v} x^{B_{d_v}} \cdot (1-x)^{C_{d_v}}, \\ x\overline{U}(x) &=& A_{\overline{U}} x^{B_{\overline{U}}} \cdot (1-x)^{C_{\overline{U}}}, \\ x\overline{D}(x) &=& A_{\overline{D}} x^{B_{\overline{D}}} \cdot (1-x)^{C_{\overline{D}}}. \end{array} \right. \begin{array}{l} x\overline{U} = x\overline{U}(+x\overline{C}) \\ x\overline{U} = x\overline{U}(+x\overline{C}) \\ x\overline{D} = x\overline{d} + x\overline{s}(+x\overline{b}) \\ x\overline{S} = f_s x\overline{D} \text{ with} \\ f_s = x\overline{s}/(x\overline{d} + x\overline{s}) = 0.31 \end{array} \right.$$

 \rightarrow variation of parametrisation (addition of parameters) later considered in the PDF uncertainties

R. Plačakytė

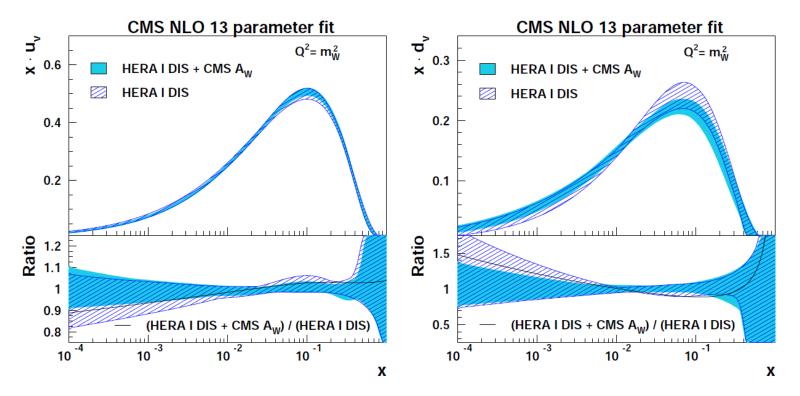
Parametrisation

PDF parametrisation at the starting scale ($Q_0^2 = 1.9 \text{ GeV}^2$):

 $A_{\bar{u}} = A_{\bar{d}}; B_{\bar{u}} = B_{\bar{d}}$ $B_{\bar{s}} = B_{\bar{d}}$ for the central fit, A_s and C_s are free parameter of the fit, assumed s = sbar $B_{\bar{s}} \neq B_{\bar{d}}$ fit included into parametrisation uncertainty

HERA data alone cannot be fitted with this parametrisation because has no sensitivity to s

 \rightarrow variation of parametrisation (addition of parameters) later considered in the PDF uncertainties


R. Plačakytė

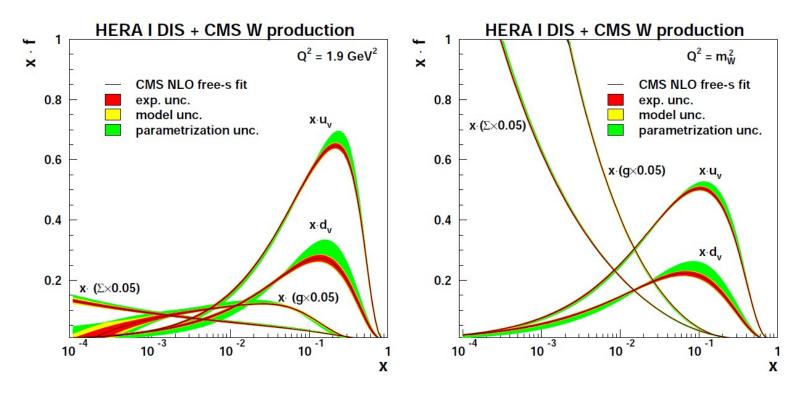
Results: CMS W asymmetry data

QCD analysis at NLO, 13 parameter (fixed-s fit)

- HERA I combined DIS data JHEP 1001:109 (2010)
- Muon charge asymmetry in W production at 7 TeV arXiv:1312:6283

error bands represent total uncertainties, (experimental, model and parametrisation uncertainties)

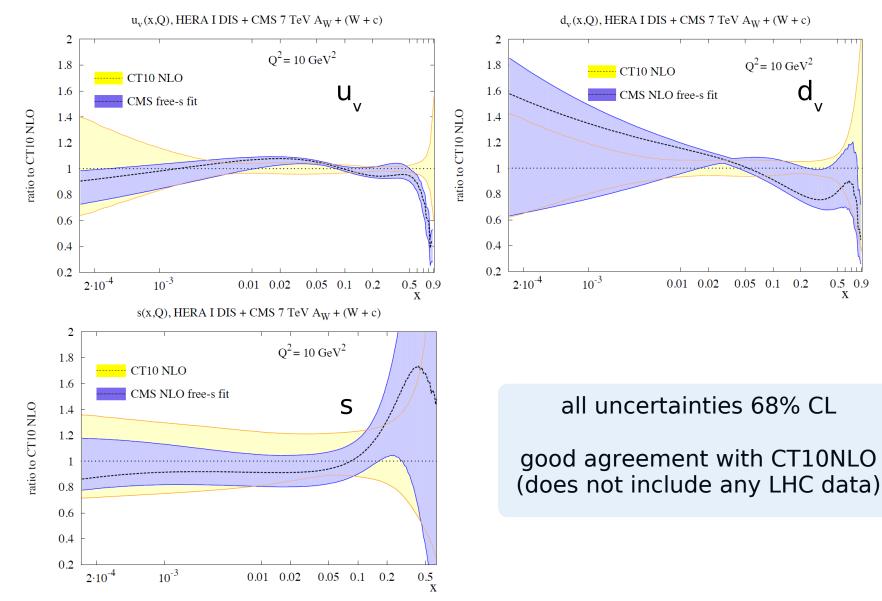
Change of PDF shape, improved constraints on the valence distributions


R. Plačakytė

Results: CMS W asymmetry and W+c data

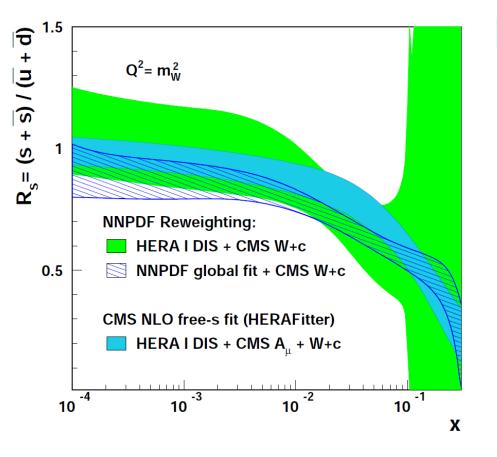
QCD analysis at NLO, 15 parameter (free-s fit)

- HERA I combined DIS data JHEP 1001:109 (2010)
- Muon charge asymmetry in W production at 7 TeV arXiv:1312:6283
- Differential cross sections of associated W+c production at 7 TeV arXiv:1310:1138



PDFs can be directly compared to NLO results by different PDF groups

R. Plačakytė


Comparison to CT10 PDFs

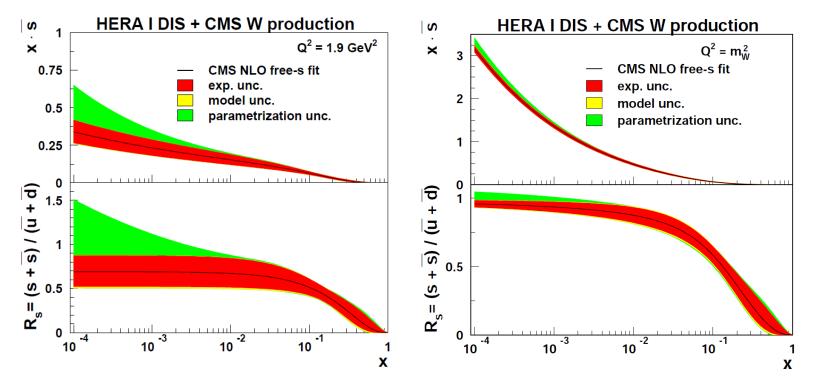
Comparison to the NNPDF reweighting

NNPDF reweighting studies

Comparison with:

- HERA I only and W+c data
- global NNPDF2.3 set (includes the neutrino DIS and the ATLAS W,Z data)

Results of full QCD analysis and NNPDF reweighting are in agreement


Determination of strangeness using collider only data

Results consistent to the constraints imposed by the neutrino scattering experiments

Results: s quark density

Determination of s quark density in the proton by using W production at CMS

The determined strangeness suppression K_{s} (20 GeV²):

 $\kappa_{\rm s} = 0.52^{+0.12}_{-0.10} \,({\rm exp.})^{+0.05}_{-0.06} \,({\rm model})^{+0.13}_{-0.10} \,({\rm parametrization})$

NOMAD K_s (20 GeV²) = 0.59 ± 0.019 Nucl.Phys. B876(2013) 339


Determined strange fraction is consistent with NOMAD results

R. Plačakytė

Comparison with ATLAS results

Comparison of the ratio of sbar over dbar determined by ATLAS and CMS

Strange fraction determined in CMS is lower than in ATLAS but results are still consistent

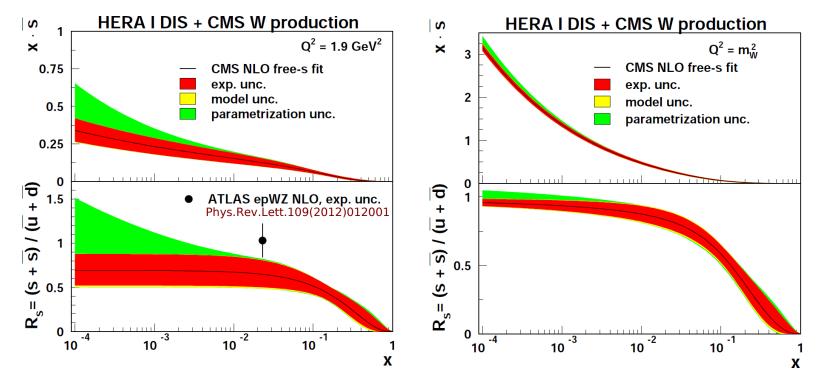
R. Plačakytė

The QCD analysis at NLO with CMS W production data:

Precise CMS measurements of muon charge asymmetry impose stronger constraints on valence quarks

An interplay of W production measurements at CMS is exploited in a PDF fit

- \rightarrow obtained PDFs consistent with CT10 NLO PDF set
- \rightarrow results are supported by the NNPDF reweighting studies
- \rightarrow strangeness suppression $\kappa_{_{S}}(Q^{2}{=}20~GeV^{2})$ is determined and is consistent with the NOMAD result
- \rightarrow strange fraction R_c(x) found to be consistent with ATLAS NLO result


Back-up slides

R. Plačakytė

Results: s quark density

Determination of s quark density in the proton by using W production at CMS

The determined strangeness suppression K_{s} (20 GeV²):

 $\kappa_{\rm s} = 0.52^{+0.12}_{-0.10} \,({\rm exp.})^{+0.05}_{-0.06} \,({\rm model})^{+0.13}_{-0.10} \,({\rm parametrization})$

NOMAD K_s (20 GeV²) = 0.59 ± 0.019 Nucl.Phys. B876(2013) 339

Determined strange fraction is consistent with NOMAD and ATLAS results

R. Plačakytė