

3rd GENERATION SUSY SEARCHES AT CMS DIS 2014, WARSAW

Alexis Kalogeropoulos (DESY) on behalf of the CMS collaboration

April 28, 2014

- 2 Gluino Mediated Searches
- 3 Direct Production Searches

Other Searches

Summary BackUp

Theoretical Motivation

naturalness

- Higgs Mass is stabilized w.o. fine-tuning
- 3rd Gen (Stop) quarks can be lighter than all squarks due to large mixing
- Wino, Bino, other squarks & sleptons can be $\mathcal{O}(\text{TeV})$

3rd Gen Searches Strategies

R-Parity conserved

- SUSY particles created in pairs
- SUSY particles undergo in (long) cascades \Rightarrow High p_T jets and/or ℓ

• LSP is stable $\Rightarrow \not{\!\! E_T}$ sign

R-Parity not-conserved

- SUSY part. can be created as "singles"
- $\bullet \ \mathsf{LSP} \ \mathsf{decays} \ \mathsf{as} \ \mathsf{well} \ \Rightarrow \ \mathsf{no} \ {\not\!\! E_T}$

Working with Simplified Models Sectrum

- Main kinematical properties are conserved
- Reduce the free parameters (masses & BR)
- Feasible to perform an analysis based on a "full" scan of the p.s.
- BR is typically assumed to be 100% for a given model
- Results are re-interpreted as upper limits on the $\sigma \times BR$ for each model

Introduction

Summary BackUp

Production Mechanisms

Gluino Mediated Searches

Final State	Analysis	Mode	
		$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$
0 (Multi-jets $+ \not E_{\mathrm{T}}$ (SUS-13-012)*	1	
$0-\epsilon$	Razor with b-jets (SUS-13-004)*	1	1
	Razor with b-jets (SUS-13-004)	1	1
$1-\ell$	Multi (b) jets (SUS-13-007)	1	
	SS - <i>l</i> + jets (SUS-13-013)*	1	1
$> 1 - \ell$	$OS-\ell$ + multi (b) jets + E_T (SUS-13-016)	1	
	$3-s\ell + b tag (SUS-13-008)$		1

*See Niki Saoulidou's talk "Inclusive SUSY Searches @ CMS"

OS leptons, multi(b) jets and large $E_{\rm T}$ •505-13-016

 $\begin{array}{l} \mbox{Preselection}: \geq 2 \mbox{ OS-}\ell, \geq 2 \mbox{ Jets}, \mbox{ ${\cal E}_T$} > 100 \mbox{ GeV} \\ \hline {\it Signalregion}: \mbox{ ${\cal E}_T$} > 180 \mbox{ GeV}, > 4 \mbox{ Jets}, \geq 2 \mbox{ b-tag Jets}, \mbox{ Jet}_{1 \mbox{ or } 2}^{|\eta|} < 1 \end{array}$

 $m(ilde{g})\simeq 1~{
m TeV}$ are excluded for $m(ilde{\chi}^0_1$) pprox 400 GeV

Direct Production Searches

Summary

Direct Stop Pair Production

Final State	Analysis	Mode	
		$\tilde{t} ightarrow t \tilde{\chi}_1^0$	$ ilde{t} o b ilde{\chi}_1^{\pm}$
$0-\ell$	Multi-jets + $E_{ m T}$ (SUS-13-015)	1	
$1-\ell$	$1-\ell$ + b-jet(s) + E_T (SUS-13-011)	✓	~

Summary

Direct Stop in $1 - \ell + E_{\mathrm{T}}$ • SUS-13-011

Cut & count and an BDT MVA method

Preselection : Exactly $1 - \ell$ (Iso), ≥ 4 Jets, $\geq 1b - tag$, $\not{E}_T > 100$ GeV Variables : \not{E}_T , min $\Delta \Phi$, M_{12}^W , H_T^{ratio} , ℓp_T , lead $_{bjet}^{P_T}$, $\Delta R(\ell, \text{lead}_{bjet}^{P_T})$... Signal region : $M_T > 120$ GeV

Direct Stop in $1 - \ell$ - Exclusion Plots

 $\begin{array}{l} m(\tilde{t})\simeq 650~(600)~{\rm GeV}~{\rm are}~{\rm excluded}\\ {\rm for}~m(\tilde{\chi}^0_1~)=0~~(\approx 240)~{\rm GeV} \end{array}$

Gluino Mediated Searches

 $\begin{array}{l} m(\tilde{t})\simeq 675~(600)~{\rm GeV}~{\rm are}~{\rm excluded}\\ {\rm for}~m(\tilde{\chi}_1^0~)=0~~(\approx 240)~{\rm GeV} \end{array}$

Direct Production Searches

Summary

Direct Sbottom Pair Production

Final State	Analysis		Mode	
		$ ilde{b} o b ilde{\chi}_1^0$	$\tilde{b} ightarrow tW \tilde{\chi}_1^0$	$ \tilde{b} ightarrow bZ \tilde{\chi}_1^0$
$0-\ell$	(b) jets $+ H_T + \not\!\!E_T$ (SUS-13-018)	1		
$1-\ell$	$1-\ell$ + b-jet(s) + E_T (SUS-13-011)	1	1	
\ 1 ℓ	SS - ℓ + jets + $\not\!\!E_{\rm T}$ (SUS-13-013)		1	
$> 1 - \ell$	$3-\ell$ + b-jets + $E_{\rm T}$ (SUS-13-008)		1	1

Direct Sbottoms • 5U5-13-018

Use of boost-corrected contransverse mass

$$m_{CT} = \sqrt{[E_T(J_1) + E_T(J_2)]^2 - [\vec{p_T}(J_1) - \vec{p_T}(J_2)]^2}$$

Presel : == 2 jets, \geq 1 b-tags, $H_T > 200 \text{ GeV}$ $\not{E}_T > 100 \text{ GeV}$ Signal regions : 1 & 2 b-tags for $m_{CT} \times (<250, 350, 450, >450) \text{ GeV}$

 $m(ilde{b})\simeq 725~(525)$ GeV are excluded for $m(ilde{\chi}_1^0$) = 0 (pprox 300) GeV

Direct Production Searches

Other Searches Summary BackUp

Other Searches

Direct Stops using monojet + large E_T \bullet SUS-13-009

Aims to $\tilde{t} \to c \ \tilde{\chi}_1^0$ when $\Delta M = m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} < 80$ GeV (compressed region)

Variable	Cut (GeV)	$ \eta $
Leading Jet	$p_T > 110$	< 2.4
NL Jet	$p_T > 60$	< 4.5
\mathcal{E}_{T}	> 250	-

Other Searches

Summary BackUp

The big picture

BackUp

OS leptons, multi(b) jets and large E_{T} - Background Estimation

- CR : Invert either one of the two SR on the η of the two jets
- Extrapolation Factor : $R_{ext.} = \frac{N_{nb-jets,SR}}{N_{nb-jets,CR}}$ in bins of E_{T} • $N_{Predicted}^{SR} = R_{ext}^{Obs,nb-jets=2} \times N_{Obs}^{CR}$

Region	$E_{\rm T}({\rm GeV})$	Jets	Jets ^{b-tag}	Jet $ \eta $
Signal	> 180	> 4	> 2	Jet1 $ \eta < 1$, Jet2 $ \eta < 1$
Control	> 180	> 4	> 2	Jet1 $ \eta \ge 1$ or Jet2 $ \eta \ge 1$
Signal for Rext	> 180	> 4	= 2	Jet1 $ \eta < 1$, Jet2 $ \eta < 1$
Control for R _{ext}	> 180	> 4	= 2	Jet1 $ \eta \ge 1$ or Jet2 $ \eta \ge 1$

Summary BackUp

Direct Sbottoms with SS leptons • SUS-13-013

Variable	p_T (GeV) for low (high) p_T
Electrons / Muons	> 10 (20)
Jets	> 40
b-tagged Jets	> 40

Summary

$1 - \ell$ + multi(b) jets • SUS-13-007

Models : 2+1 models depending if $m_{\tilde{g}} > (<) m_{\tilde{l}_1} \Rightarrow \text{real/virtual } \tilde{t}$ Strategy : a) extract \not{E}_T in high H_T (SR) b) $\Delta \Phi(W, \ell)$ in SR of $S_T = \not{E}_T + p_T^{\ell}$

Δ**φ(W,l**)/24

Exclusion limits

CMS Preliminary, L = 19.4 fb⁻¹, vs = 8 TeV

23/24

Summary

Direct Stop with multi-jets • SUS-13-015

Variable	Cut
Jets	\geq 5, 1&2 $>$ 70 GeV 3&4 $>$ 50 GeV
b-tag Jets	≥ 1
$\Delta \Phi(\vec{p_{Tj}}, \vec{p_T^{miss}}), j = 1, 2, 3$	> 0.5, > 0.5, > 0.3
M_{T2}	$\geq 300 \; { m GeV}$
$0.5 \cdot M_T^{3-jet} + M_T^{Rsys}$	$\geq 500~{ m GeV}$

CMS Preliminary, L = 19.4 fb⁻¹, √s = 8 TeV

Direct Stop with multi-jets - Exclusion Plots

