QCD Studies With CMS Data

for Measurements of

the Top-Quark Mass and the Strong Coupling Constant

Sebastian Naumann-Emme

DESY

DPG-Frühjahrstagung, Mainz, 2014-03-25

The Compact Muon Solenoid & Quantum Chromodynamics

There is QCD in all these hadron collisions

CMS 2011 / 2012 5 / 20 fb⁻¹ of pp data at $\sqrt{s} = 7$ / 8 TeV

Thorough understanding and accurate modeling of QCD needed: for SM precision and for BSM searches \rightarrow see K. Lipka's talk this morning

In the following, will discuss two topics:

- 1. The top-quark mass
 - QCD modeling
 - Pole mass via the $t\bar{t}$ cross section
- 2. The strong coupling constant
 - From the $t\bar{t}$ cross section
 - From differential jet cross sections

Results are labeled with CMS publication IDs:					
SMP-12-028	TOP-13-007 etc.				
Further details on the web:					
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults					

The Top-Quark Mass

As G. Cortiana pointed out few minutes ago,

a yet more precise knowledge and understanding of m_t is needed \rightarrow for EW precision fits, the fate of the universe...

World average: $m_t = 173.34 \pm 0.36$ (stat+JES) \pm 0.67 (syst) GeV

TOP-13-014

CMS' latest measurement, presented at Moriond this morning:

World average: $m_t = 173.34 \pm 0.36 \text{ (stat+JES)} \pm 0.67 \text{ (syst) GeV}$

TOP-13-014

CMS' latest measurement, presented at Moriond this morning:

Hard-scattering matrix element (ME): MadGraph, Powheg, MC@NLO...

Parton distribution functions (PDFs): CTEQ, MSTW, NNPDF...

Multi-parton interactions (MPI)

Initial-state radiation (ISR)

Parton shower (PS) and hadronization: Pythia (Lund string fragmentation) or Herwig (cluster fragmentation)

Check dependence of m_t measurement on event kinematics,

comparing to different ME generators, hadronization models, UE tunes

 \rightarrow probing in particular variables that could be sensitive to color-reconnection effects

Difference to our standard MC: MadGraph+Pythia6 with Z2* tune

Differential Top-Mass Studies (cont.)

Studied 14 variables \rightarrow summed $\chi^2/Ndf = 37/47$ (prob. = 85%) with MadGraph+Pythia6 and Z2* tune

Within current statistics: data overall well modeled by MC

With more data: Will be able to constrain model uncertainties further

TOP-14-001

UE study, using high-purity $t\bar{t}$ sample in the dilepton channel:

- Event-by-event axis: $\vec{p}_T(t\bar{t}) \equiv \vec{p}_T(b_1) + \vec{p}_T(b_2) + \vec{p}_T(\ell) + \vec{p}_T(\bar{\ell}) + \vec{p}_T^{\text{miss}}$
- Subtract $b_1, b_2, \ell, \overline{\ell}$ to characterize the soft, underlying activity
- Look at data/MC ratios, e.g. for the average p_T of charged particles as a function of $p_T(t\bar{t})$

Default MC: MadGraph+Pythia6 with tune Z2*

Here: comparison to different "Perugia 11" tunes

Description of data ${\approx}20\%$ worse when switching off color reconnections

TOP-13-007

B Fragmentation and Exclusive Decays

Clear signal of $b \rightarrow J/\psi + X$ in $t\bar{t}$ events

Overall rate and kinematic distributions reasonably well modeled

Future measurement: m_t via $m(\ell, J/\psi)$

Will require more precise fragmentation studies with LHC data

1. Aren't you just measuring a parameter of your MC event generators?

- Practically all m_t measurements need calibration to MC
- However, according to implementation: *m*^{MC}_t close to pole mass in the sense of Breit-Wigner mass peak
- In 2011, A. Buckley et al.: "shift could be $\mathcal{O}(1 \text{ GeV})$ "
- ▶ Discussion at TOP2013: " $m_t^{MC} = m_t^{pole}$ within 250–500 MeV", uncertainty being mainly from:
- 2. Isn't the pole mass ill-defined for a quark (colored object) anyway?
 - Intrinsic renormalon ambiguity: pprox 270 GeV for m_t
- \sim Motivated to bring m_t measurements to uncertainties of \lesssim 0.5 GeV also at a hadron collider

But: proper modeling of non-perturb. effects required

 \ldots especially when reconstructing invariant mass of decay products

Since last year: $\sigma(pp \rightarrow t\bar{t} + X)$ calculated at NNLO+NNLL QCD \rightarrow Uncertainties from higher orders (μ_R , μ_F), PDF, α_S , and m_t now $\approx 3\%$ each

Compare to CMS' most precise result for $\sigma_{t\bar{t}}$: $\sqrt{s} = 7$ TeV, dileptons,

4% uncertainty

Full α_{s} -PDF correlations taken into account Only minor differences between 4 of 5 PDF sets; ABM has smaller gluon density

Obtain most probable mass value from marginalized joint posterior with Bayesian confidence interval

The Strong Coupling Constant

2013 world average: $\alpha_S(m_Z) = 0.1185 \pm 0.0006$ (based on NNLO and N³LO)

0.5% uncertainty, but still significant for precise calculations

Tension between and within different categories (especially DIS structure funcs, but also e^+e^-)

Precision driven by low-Q data and lattice QCD

α_S from the $t\bar{t}$ Cross Section

Three different measurements:

SMP-12-028 Double-diff. inclusive jet cross section: $\frac{d^2\sigma}{dp\tau dy}$

QCD-11-003 Ratio of inclusive trijet/dijet cross sections: $R_{32}(\langle p_{T1,2} \rangle)$

SMP-12-027 Double-diff. trijet cross section: $\frac{d^2\sigma}{dm_3dy_{max}}$

All three analyses using the 7 TeV data and same methodology for α_{S} :

- Compare measured cross section to QCD prediction at NLO Using NLOJet++; adding MC-based non-perturbative corrections; for the inclusive jets additionally EW corrections
- 2. Use PDF sets provided for series of $\alpha_S(m_Z)$ values to determine α_S dependence \rightarrow preserves PDF- α_S correlations

3. Obtain best $\alpha_{S}(m_{Z})$ and uncertainty via χ^{2} summed over bins

α_{S} from Jets: Results

		$\alpha_S(m_Z)$	$\delta_{rel}^{max}(scale/total)$	probed Q
TOP-12-022	tīt (NNLO)	$0.1151^{+0.0033}_{-0.0032}$	0.8% / 2.9%	$m_t = 173 { m GeV}$
SMP-12-028	incl. jets (NLO)	$0.1185^{+0.0065}_{-0.0041}$	4.6% / 5.5%	$p_T = 0.1 - 2.1 \text{ TeV}$
QCD-11-003	trijet/dijet (NLO)	$0.1148\substack{+0.0055\\-0.0055}$	4.4% / 4.8%	$\langle p_{T1,2} angle = 0.4$ –1.4 TeV
SMP-12-027	trijet mass (NLO)	$0.1160^{+0.0072}_{-0.0031}$	5.9% / 6.2%	$m_3/2 = 0.3-1.4$ TeV

Probing the Running of α_S

- By construction, we obtain for any Q bin directly α_S(m_Z)
- If assumed evolution not valid: α_S(m_Z) shifted
- For illustration of running, can later evolve back: α_S(Q)
- Note: RGE validity also assumed in employed PDFs
- Strength of *R*₃₂ ratio: reduction of exp. and theor. uncertainties and of dependence on PDF evolution

$\alpha_S(Q)$ depends on number of active flavors at Q

Seeing / not seeing change of slope: evidence for / against new colored particles

- Measuring *m_t* requires excellent understanding of QCD effects and the LHC data already allow us to study these
- $t\bar{t}$ cross section enabled first α_{S} at NNLO from a hadron collider
- Jets probing α_S up to TeV scale already, but higher precision requires NNLO prediction
- Probing the running of α_S at highest energies will require considerable work by theory and experiment
- Will we be able to measure the running of m_t? Maybe: m_t^{MS} from differential tt cross section up to very high p_T(tt)

BACKUP

Hadronization:

- Flavor-dependent JES: Difference in jet energies from Pythia6 (Lund string fragmentation) to Herwig++ (cluster fragmentation), evaluated for light quarks, b-quarks, and gluons separately, then added in quadrature
- **b** fragmentation: Retuned Bowler-Lund fragmentation in Pythia to describe *x*_B data from ALEPH and DELPHI, difference to Z2* tune taken as systematic uncertainty
- Semileptonic B-hadron decays: Varied branching ratios within PDG uncertainties; direct impact on neutrino fractions

Hard scattering:

- Parton distribution functions: Difference between CTEQ6.6L and envelope of PDF+ α_S uncertainties from CT10, MSTW2008, and NNPDF2.3
- Renormalization and factorization scales: Q^2 ×0.25 and ×4
- ME-PS matching threshold: Default value of 20 GeV varied to 10 and 40 GeV
- ME generator: Difference between MadGraph (LO multileg) and Powheg (NLO); additionally difference between measured and predicted top p_T spectrum

Non-perturbative QCD:

- Underlying event: Comparison between Pythia tunes: P11 vs. P11mpiHi and P11TeV
- Color reconnections: Comparison between Pythia tunes: P11 vs. P11noCR

Analyis at 7 TeV: TOP-11-015		Analyis at 8 TeV: TOP-14-001		
$m_t = 173.49 \pm 0.43 \; ({ m stat+JES}) \ \pm \; 0.98 \; ({ m syst}) \; { m GeV}$		$m_t = 172.04 \pm 0.19 \; ({ m stat+JES}) \ \pm 0.75 \; ({ m syst}) \; { m GeV}$		
	δm_t (GeV)		δm_t (GeV)	
Fit calibration	0.06	Fit calibration	0.10	
p_T - and η -dependent JES	0.28	p_T - and η -dependent JES	0.18	
Jet energy resolution	0.23	Jet energy resolution	0.26	
Missing transverse momentum	0.06	Missing transverse momentum	0.09	
Lepton energy scale	0.02	Lepton energy scale	0.03	
b-tagging	0.12	b-tagging	0.02	
Pileup	0.07	Pileup	0.27	
Non- $t\overline{t}$ background	0.13	Non- $t\overline{t}$ background	0.11	
		Flavor-dependent JES	0.41	
b-JES	0.61	b fragmentation	0.06	
		Semileptonic B-hadron decays	0.16	
Parton distribution functions	0.07	Parton distribution functions	0.09	
QCD scales (μ_R, μ_F)	0.24	QCD scales (μ_R , μ_F)	0.13	
ME-PS matching threshold	0.18	ME-PS matching threshold	0.15	
		ME generator	0.23	
Underlying event	0.15	Underlying event	0.17	
Color reconnection effects	0.54	Color reconnection effects	0.15	

malyis at 7 TeV:
 TOP-11-015
 Analyis at 8 TeV:
 TOP-14-001

$$m_t = 173.49 \pm 0.43 \text{ (stat+JES)} \pm 0.98 \text{ (syst) GeV}$$
 $m_t = 172.04 \pm 0.19 \text{ (stat+JES)} \pm 0.75 \text{ (syst) GeV}$

- Shift from 7 to 8 TeV: -1.45 GeV
- Significance: $\sqrt{\delta_{7\text{TeV}}^2 + \delta_{8\text{TeV}}^2 2 \times \rho \times \delta_{7\text{TeV}} \times \delta_{8\text{TeV}}}$
- Correlation ρ :
 - 0 for (stat+JES)
 - low for experimental uncertainties, due to new MC/data corrections and scale factors
 - high for theory uncertainties, since no drastic change in \sqrt{s}
- Realistic assumptions for $\rho \curvearrowright$ significance of shift: 1.7–1.9 σ

Differential $t\bar{t}$ cross section as a function of the jet multiplicity:

Using same CMS inclusive-jet data and NLO theory as before, can also study impact on PDFs:

Simultan. fit of PDF and α_S with HERA+CMS data yields: $\alpha_S(m_Z) = 0.1192^{+0.0017}_{-0.0015}$

Constraining PDFs with Jets

S. Naumann-Emme: QCD Studies With CMS Data

SMP-12-021

Muon charge asymmetry in W production: sensitive to d_v , u_v , d/u

<code>MSTW2008CPdeut:</code> variant of <code>MSTW2008</code> with more flexible parametrization and deuteron corrections; changes u_V and d_V

Again HERAFitter analysis with HERA-I DIS data as baseline; NLO from MCFM for W data $% \left({{\rm D}{\rm A}} \right) = \left({{\rm D}{\rm A} \right) = \left({{\rm D}{\rm A}} \right) = \left({{\rm D}{\rm A} \right) = \left({{\rm D}{\rm A}} \right) = \left({{\rm D}{\rm A} \right) = \left({{\rm D}{\rm A}} \right) = \left({{\rm D}{\rm A} \right$

Strangeness in standard PDFs based on neutrino-scattering data

Measured $t\bar{t}$ cross sections start providing constraints on the gluon PDF

With the coming data, electroweak single-top production can be used to probe the b PDF and the u/d ratio (proton valence content: u/d = 2)

Complementary to measurements via W asymmetry, which probe $0.001 \lesssim x \lesssim 0.1$ at the LHC and $0.005 \lesssim x \lesssim 0.3$ at the Tevatron