Beam Condition Monitors and a Luminometer Based on Diamond Sensors

Wolfgang Lange, DESY Zeuthen and CMS BRIL group

Beam Condition Monitors and a Luminometer Based on Diamond Sensors INSTR14 in Novosibirsk, February 25 2014

Outline

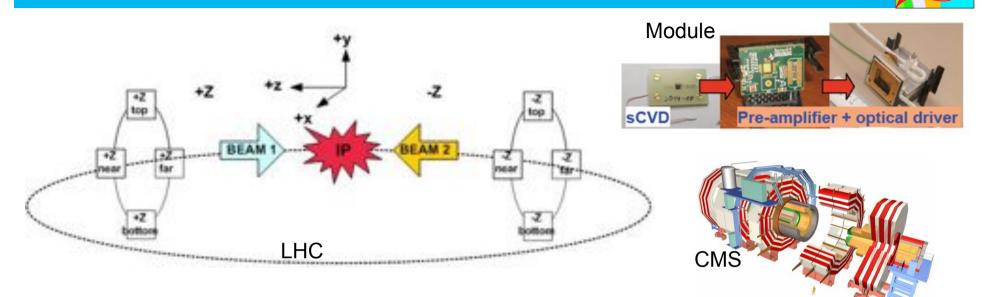
Introduction

Beam Condition Monitors, CMS BCM1F before the current shutdown System design, performance, limitations Upgrade in current shutdown Description, design, beam test results Conclusions

Context

- LHC running at unprecedented beam energies and intensities
- Even small beam losses may cause damage to CMS detector components

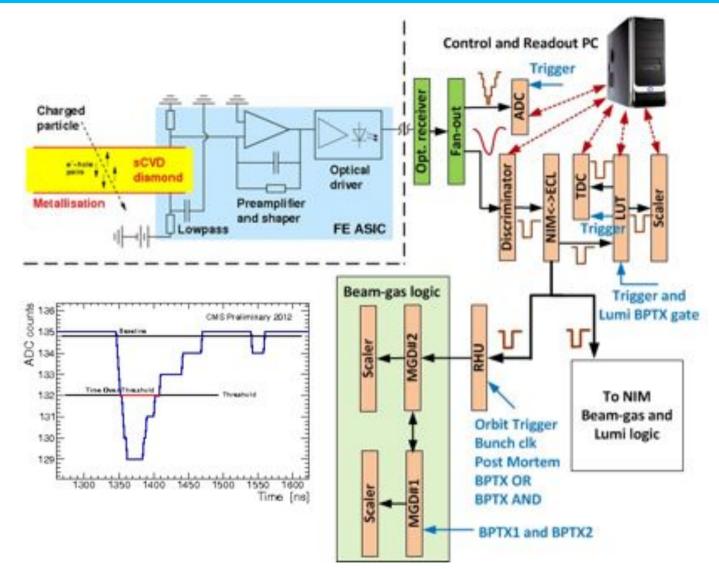
Purpose of Beam Condition Monitors


- Monitor particle fluxes near the beam pipe
- Ensure sufficiently low inner detector occupancy for data-taking
- Detect beam loss conditions
- Initiate reactions when necessary (beam abort)

CMS

- Uses different beam condition monitors in its BRM system
- Integrating monitors (signal current) \rightarrow BCM1L, BCM2
- Bunch by bunch monitors → scintillators and BCM1F

Fast Beam Condition Monitor BCM1F (up to 2012)


- 8 5mm x 5mm single-crystal CVD diamonds (Element 6) positioned around the beam-pipe, radial distance 4.5 cm, 1.8 m from interaction point
 - Diamond \rightarrow no cooling, robust, radiation-hard
 - Sensor module: diamond, radiation-hard preamplifier, optical driver
- Bunch-by-bunch information on flux of beam halo and collision products
 - Monitor condition of beam: ensure low radiation for silicon tracker
 - Calculate luminosity

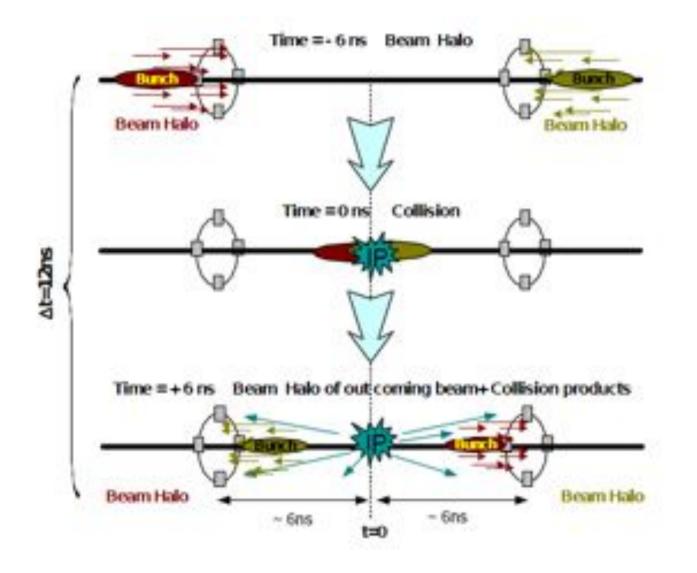
Readout independent of CMS DAQ

BCM1F Electronics (up to 2012)

Output:

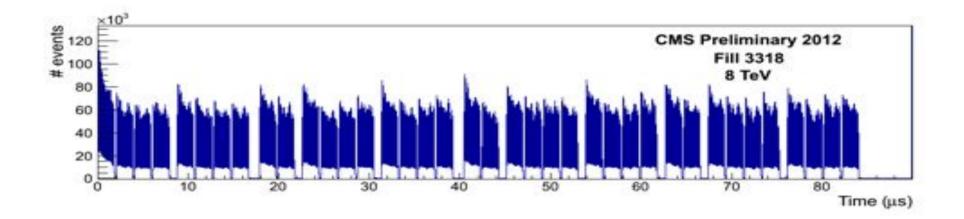
analog spectra ADC → monitoring

hit rates Discriminator →


Look-up table "LUT"

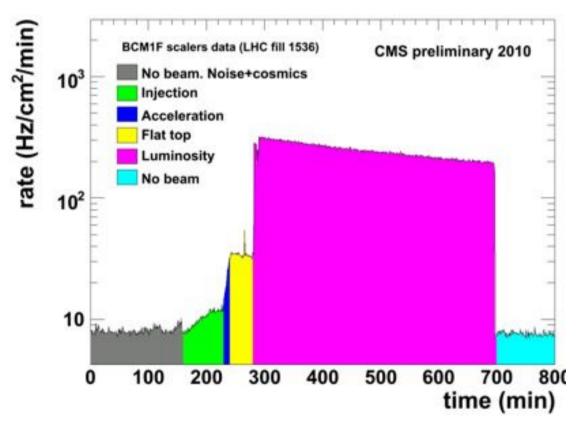
Recording Histogram Unit "RHU"

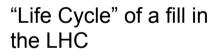
What can be seen with such a device?



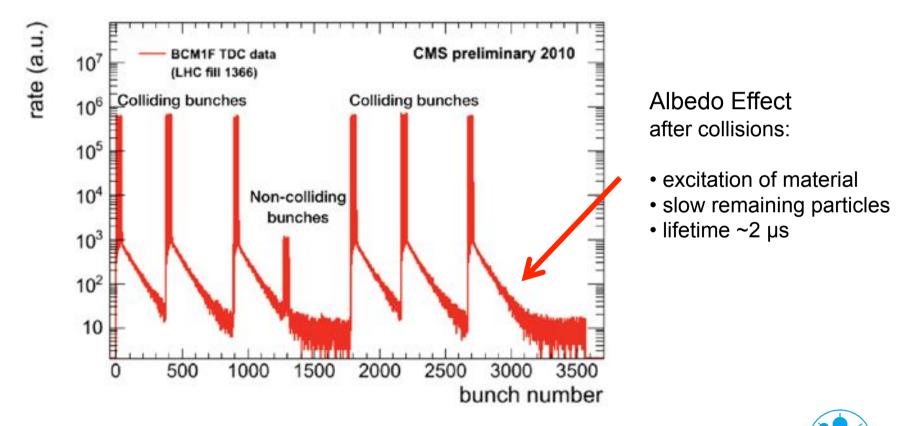
Wolfgang Lange | BCM with Diamonds | 25-Feb-2014 | Page 6

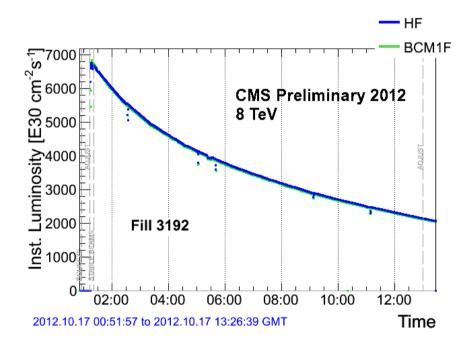
- Operated right from the start of LHC \rightarrow first (splash) beam in LHC already seen
- measures underground rates and time structure of beams
- discovery of "Albedo Effect" (afterglow of slow particles)
- delivers relevant background rates to CMS and to LHC control room
- measures online luminosity




Bunch structure inside LHC, abort gap on the right

- Operated right from the start of LHC: first (splash) beam in LHC seen
- measures underground rates and time structure of beams
- discovery of "Albedo Effect" (afterglow of slow particles)
- delivers relevant background rates to CMS and to LHC control room
- measures online luminosity





- Operated right from the start of LHC: first (splash) beam in LHC seen
- measures underground rates and time structure of beams
- discovery of "Albedo Effect" (afterglow of slow particles)
- delivers relevant background rates to CMS and to LHC control room
- measures online luminosity

- Operated right from the start of LHC: first (splash) beam in LHC seen
- measures underground rates and time structure of beams
- discovery of "Albedo Effect" (afterglow of slow particles)
- delivers relevant background rates to CMS and to LHC control room
- measures online luminosity

Collision rates (LUT) are used for luminosity measurements:

- Requires calibration
- online luminosity in CMS done by Hadron Forward Calorimeter (HF)

Test of BCM1F as online luminometer:

- good agreement
- validated with calculations of HF, pixels
- \rightarrow has potential as online luminometer
- advantage: decoupled from CMS DAQ

Limitations of BCM1F (up to 2012)

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage \rightarrow polarization \rightarrow how to cure?
- only 4 sensors on each side of the interaction point \rightarrow saturation / pile-up problems

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage \rightarrow polarization \rightarrow how to cure?
- only 4 sensors on each side of the interaction point \rightarrow saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation
- use of components with extended high voltage tolerance
 - metallization of sensors split into two pads
- use of 12 sensors with two pads each \rightarrow 24 channels per side

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage \rightarrow polarization \rightarrow how to cure?
- only 4 sensors on each side of the interaction point \rightarrow saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation
- use of components with extended high voltage tolerance

• metallization of sensors split into two pads

• use of 12 sensors with two pads each \rightarrow 24 channels per side

Upgrade Program of BCM1F in the current Shutdown

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage \rightarrow polarization \rightarrow how to cure?
- only 4 sensors on each side of the interaction point \rightarrow saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation
- use of components with extended high voltage tolerance

• metallization of sensors split into two pads

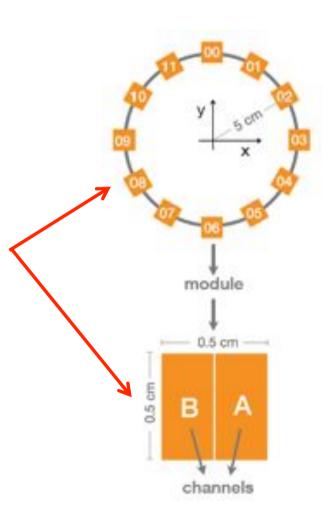
• use of 12 sensors with two pads each \rightarrow 24 channels per side

Upgrade Program of BCM1F in the current Shutdown

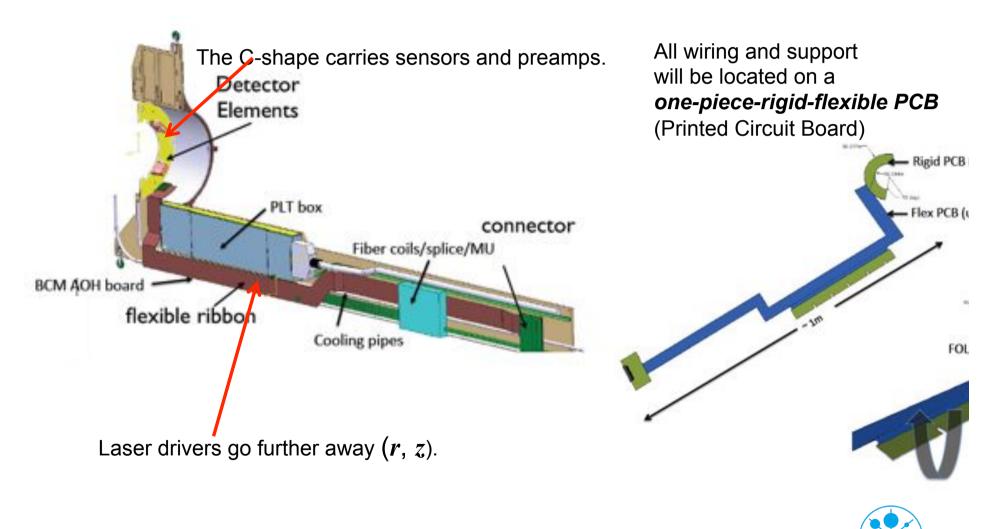
- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage \rightarrow polarization \rightarrow how to cure?
- only 4 sensors on each side of the interaction point \rightarrow saturation / pile-up problems

Design of a new preamp:

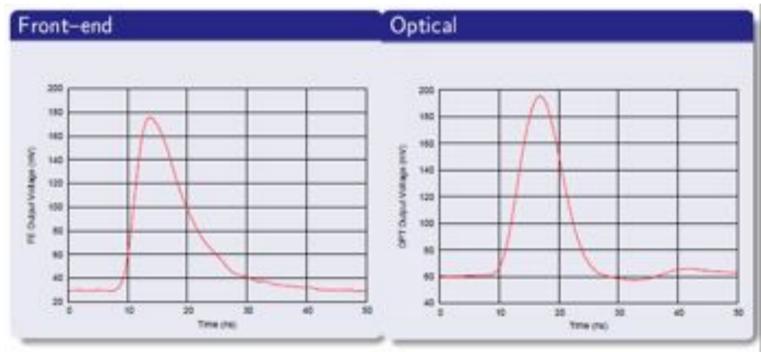
- rise time below 12 ns
- fast recovery from overdrive
- differential outputs


- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation
- use of components with extended high voltage tolerance
 - metallization of sensors split into two pads
- use of 12 sensors with two pads each \rightarrow 24 channels per side

Implications of LHC upgrade for BCM1F


- Radiation: Luminosity $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ \rightarrow BCM1F expects charged particle flux $\sim 3x10^7 \text{ cm}^{-2}\text{s}^{-1}$ 25 ns bunch spacing High hit rate
- 12 diamonds with 2 pads per diamond, both sides of IP → 48 channels
- Minimize and deal with radiation damage
- Scale up full system from 8 channels
- Faster electronics (preamp)
- Integrate readout with other luminosity subsystems

From Plans to Reality: the re-designed carriage

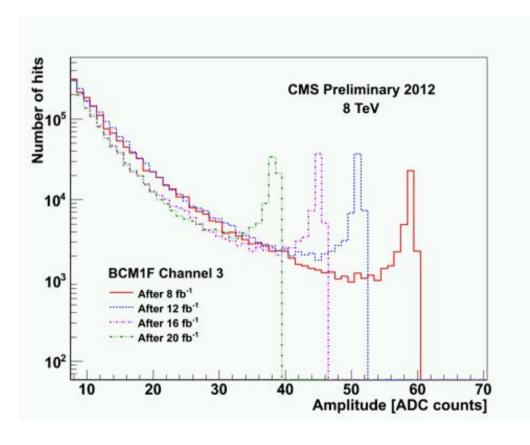


Wolfgang Lange | BCM with Diamonds | 25-Feb-2014 | Page 17

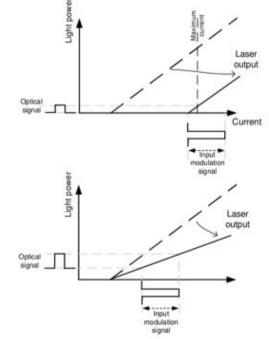
From Plans to Reality: the re-designed frontend chip

CMS

- ASIC designed by AGH Krakow (PL), Designer: Dominik Przyborowski
- IBM CMOS-8RF-130nm technology (radiation hard, submitted via CERN)
- ~50 mV/fC charge gain
- < 1k electrons ENC
- Sophisticated calibration logic
- 4 channels on 1 chip

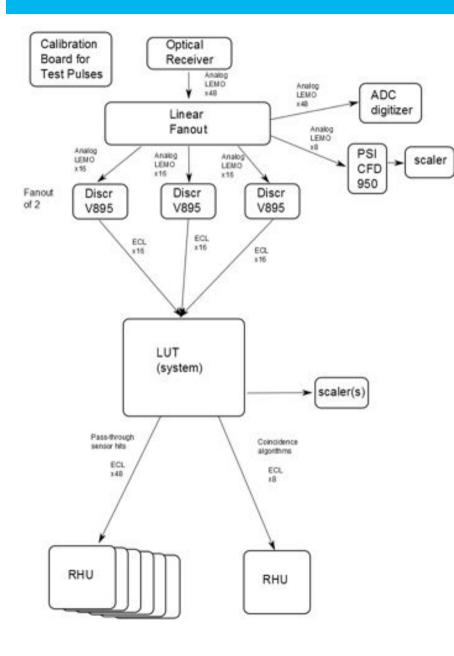

Laboratory measurements of the full readout chain of upgraded BCM1F

From Plans to Reality: improving the optical chain



Radiation damage of laser driver visible in decreasing signal amplitude:
25% gain lost in BCM1F optical transmission after 30 fb⁻¹

Countermeasures:

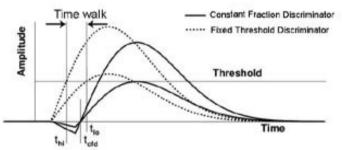

- Go away from the "hot" area
- Compensate the loss in gain
- compensate for the shifted laser threshold

DESY

Wolfgang Lange | BCM with Diamonds | 25-Feb-2014 | Page 19

Upgrade of Backend Electronics

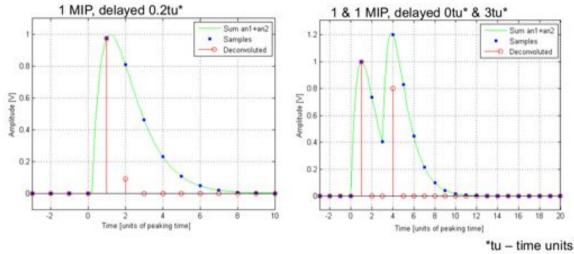
- Use "tried and true" discriminator path for initial running while commissioning digitizer path
 - \rightarrow following slide
- LUT: create coincidences between all 48 channels → patterns
- RHU for readout (later slide) → dedicated histograms


Signal Processing

Two parallel tracks to be followed:

Discriminators

Fixed-threshold vs. constant-fraction



Constant-fraction: better time resolution

Fixed-threshold: lower deadtime

Preliminary conclusion: deadtime outweighs resolution -> use FTD (CAEN V895) for primary path but install CFD to run and test in parallel

Digitizer with fast peak-finding algorithms

Identify pulse arrival time and peak height, distinguish signals close in time (overlapping) "deconvolution"

Development of algorithms ongoing

Current hardware choice: uTCA ADC FMC mezzanine system. Multiple FMC candidates, to be tested

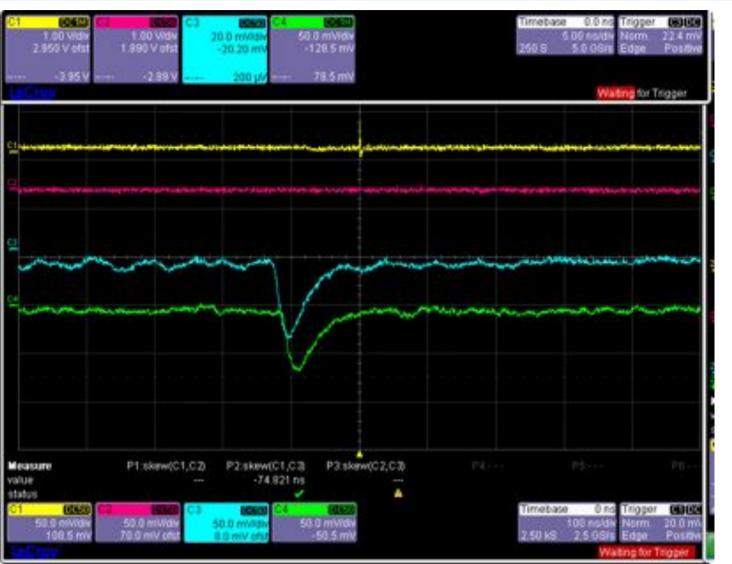
Recording Histogram Unit (RHU)

RHU: Readout of full-orbit histograms

- No deadtime (buffered readout)
- 8 histogramming input channels
- Bins of 6.25 ns = 4/bunch bucket (14k bins/orbit)
- Bunch clock, orbit clock, beam abort
- Configurable sampling period
- Ethernet readout
- Developed at DESY-Zeuthen
- Prototype installed Sept. 2012, validated during 2012-2013 run
- Very flexible unit (FPGA based, own interface and OS)
- Physics friendly data compression for direct access

Many improvements in the works to increase effectiveness

- *Carriage*: 48 channels, single PCB
- Diamond sensors: minimize effects of radiation damage using higher voltage
- New fast front end ASIC to reduce inefficiencies
- Optical chain: lower radiation for laser driver, multi-amplitude test pulses
- **Back end**: Discriminator path in parallel with digitizer peak-finding
- RHU for collection of hit rates
- Algorithms *for luminosity measurement*
- Outlook
 - Installation of 4 carriages (full system) planned begin of September
 - Comissioning of all subsystems soon after installation and recovery of the LHC


Thank you for your attention!

Спасибо за вниманию!

Wolfgang Lange | BCM with Diamonds | 25-Feb-2014 | Page 24

Backup Slides (1) - Very first beam in LHC

Backup Slides (2) – Luminosity Basics

For a pp collider, the luminosity can be defined as,

$$L = \frac{\mu_{vis} \cdot n_b \cdot f_{orbit}}{\sigma_{vis}}$$

μ = average number of inelastic collisions
 forbit = orbit frequency (

 11246 Hz)
 n_b = number of colliding bunches (\$1380)
 σ_{mal} = inelastic pp cross-section

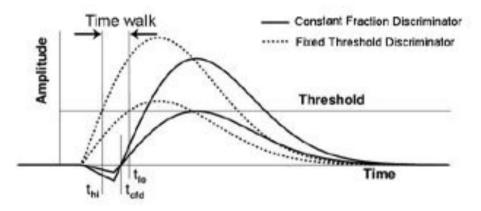
Where we account for the detection efficiency by considering $\sigma_{vis} = \varepsilon \sigma_{inel}$. σ_{vis} is measured using a Van der Meer scan (see back-up for details).

Zero Counting

Assuming that the number of observed interactions is Poisson distributed with and MPV of μ , we can determine μ by measuring the number of colliding bunch crossings with no observed interaction,

$$P_n = \frac{\mu^n e^{-\mu}}{n!} \to \mu = -\ln[P_0]$$
 where $P_0 = 1 - P_{OR} = 1 - \frac{N_{OR}}{N_{BX}}$ (2)

(1)

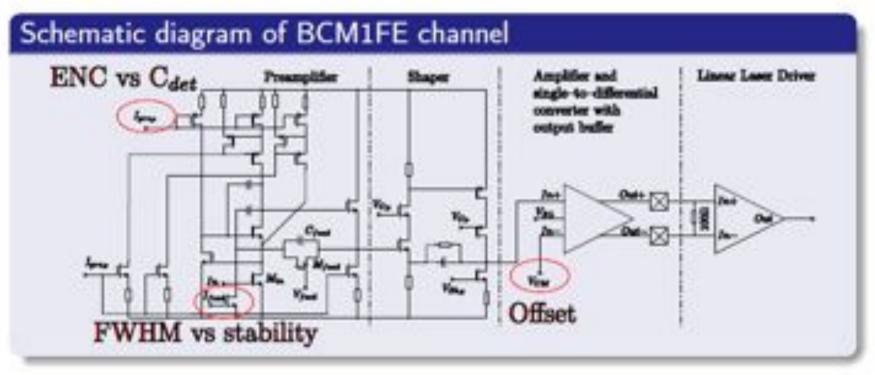


Backup Slides (3) – Discriminators

Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk" $\Delta T \sim 12$ ns

Meanwhile tested: two constant-fraction discriminators: CAEN V812, PSI CFD950


Both CFDs significantly improve on FTD time walk

- V812: better time resolution for trigger of single pulse
- CFD950: better resolution between consecutive pulses

Backup Slides (4) – upgraded frontend ASIC

IBM CMOS8RF 130nm technology

- 2.5 V power supply (high voltage enabled design)
- Power consumption ~ 11 mW/ch (10mW of output buffer)

