Search for a neutral MSSM Higgs boson decaying into two tau leptons

with 12.9 fb⁻¹ of 2016 data at 13 TeV

Yiwen Wen DESY

10th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" DESY, 22nd November 2016

introduction

- > discovery of SM-compatible ~125 GeV Higgs boson in 2012
 - great success of SM
- shortcomings of SM: dark matter and hierarchy problem
- one of simplest extensions is Minimal
 Supersymmetric Standard Model(MSSM)
 - all SM particles have superpartner
 - two Higgs doublets
- > R-parity conserved \rightarrow lightest sparticle stable \rightarrow dark matter candidate
- > cancellation of quadratically divergent self energy corrections to Higgs mass → tiny Higgs mass protected → solve hierarchy problem

Standard particles

introduction: MSSM Higgs sector

> two Higgs doublets:

- one coupling to up-type and one to down-type fermions
- > lead to 5 physical Higgs particles:
 - 2 charged H+, H-
 - 2 neutral scalar H, h
 - 1 neutral pseudoscalar A
- > 2 parameters in tree level:
 - tanβ, ratio of vacuum expectation value of 2 doublets
 - m_A , mass of the pseudoscalar A
- > take Higgs(125) as lightest h, searches for H/A

> Higgs coupling is proportional to fermion mass:

large tanβ leads to enhanced rate of decay width to down-type fermion:

τbt

τb

> good discrimination against SM background at LHC

tau ID: tau reconstruction in CMS

- > leptonic decay ->35%: standard electron ID or Muon ID
- hadronic decay ->65%: hadron-plus-strip(HPS) algorithm

	Decay Mode	Resonance	B [%]
leptonic decays	$\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}$		17.8
	$\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$		17.4
1 - prong decays	$\tau^- \rightarrow \pi^- \nu_{\tau}$	π(140)	11.6
,, ·	$\tau^- ightarrow \pi^- \pi^0 \nu_{ au}$	$\rho(770)$	26.0
	$\tau^- ightarrow \pi^- \pi^0 \pi^0 \nu_{ au}$	a ₁ (1260)	10.8
3 - prongs decays	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$	a ₁ (1260)	9.8
	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$		4.8
	Other hadronic modes		1.7
	All hadronic modes		64.8

hadronic taus reconstructed from a combination of tracks, and strips of energy deposits in the ECAL

- tau mass calculated from tracks and strips should be compatible with tau decay
- in run-2, strip size adjusted dynamically!

CMS Preliminary 2012, Vs = 8 TeV, 19.4 fb⁻¹

Yiwen Wen, DESY

searches for 2 taus

- > 4 of 6 final states considered: µTh,eTh,Th,eµ (Th: hadronically decaying tau), accounts for ~ 80% of di-tau decay
- > split events into 2 categories based on number of b-tagged jets

>=1 b-tags

large tan β

b-associated Higgs production, bbp

ет_h, µт_h

trigger: single μ , single e

Selections:

good identified **μ:** pT>23 GeV, **e:** pT>26 GeV **τ**_h:

pT > 20 GeV

eμ

trigger: eµ cross trigger

Selections:

good identified μ : pT>10 GeV **e**: pT>13 GeV

^Th^Th

trigger: di-tau trigger

Selections:

```
good identified \mathbf{T_h}: pT >40 GeV
```

all channels:

pair opposite-signed

no additional loose e, µ

space separated $\Delta R > 0.5(0.3 \text{ in } e\mu)$

analysis: additional selection

to reduce W+Jets in et_h, μt_h channel

 $m_T = \sqrt{2 p_T^{e,\mu} E_T^{miss} (1 - \cos \Delta \phi)} < 50(40) GeV$

to reduce Top pair production in eµ channel

 $D_{\zeta} = P_{\zeta} - 1.85 \cdot P_{\zeta}^{vis} > -20 GeV$

- $\vec{\zeta}$ is axis bisecting directions $\vec{p}_{\scriptscriptstyle T}^{\scriptscriptstyle e}$ and $\vec{p}_{\scriptscriptstyle T}^{\scriptscriptstyle \mu}$

12.9 fb⁻¹ (13 TeV) 22000 CMS Observed 20000 Preliminary Ζ→ττ Ζ→μμ 18000 Electroweak 9 16000 tī Signal QCD 14000 region Bkg. uncertainty 12000 High-m_ 10000 control region 8000 6000 4000 2000 Obs/Exp 0 80 100 140 160 120 m_T (GeV)

analysis: background estimation overview

shape from MC

from SS with other backgrounds subtracted, and OS/SS ratio applied, shape from SS **ThTh: Norm** from OS region with loose isolation, with scale factor loose->tight isolation applied.

Shape from OS region with loose isolation

results: observable

> observable to extract signal: total transverse mass

Yiwen Wen, DESY

results: limit plots

- > all four channels are combined
- Fit total transverse mass to set model independent upper limits on σ x BR
- background only hypothesis: SM without Higgs(125)

Yiwen Wen, DESY

results: sensitivity of different channels

 $\tau_h \tau_h$: best sensitivity in high mass region, because of falling QCD background

 $e\mu$: good sensitivity in very high mass region due to vanishing ttbar background

results: H/A→TT model interpretation

- > scan $\mathbf{m}_{\mathbf{A}}$ -tan $\boldsymbol{\beta}$ plane in $m_h^{\text{mod}+}$ scenario
- > light blue shaded region: observed exclusion
- > grey bands: ±1, ±2 σ expected exclusion
- red shaded region: excluded due to lack of scalar h compatible with m_h=125±3 GeV
- > already surpassed run 1 limit in 2015 analysis for mass > 300 GeV

conclusions

> new results of MSSM Higgs -> tau tau at 13 TeV (HIG-16-037)

http://cds.cern.ch/record/2231507

- > no evidence for a signal has been found and exclusion limits are presented
- improved sensitivity and extended the mass scale with respect to previous 2015 analysis and run 1 analysis
- result has been interpreted in MSSM benchmark scenarios
- > 37.8/fb data has been collected in 2016 by CMS
- > stay tuned, **more results** will arrive soon!

Backups

eτ_h, μτ_h

trigger: µ (22), e(25)

Selections:

μ: pT>23GeV, |η|<2.1, Iso<0.15 **e:** pT>26GeV, |η| <2.1, Iso<0.1 **τ:** p > 20GeV, |η|<2.3, Medium Tau Iso ID

eμ

trigger: $\mu(8)$, e (23) or $\mu(23)$, e (12)

Selections:

μ: pT>10(24)GeV, |η|<2.4, Iso<0.2 **e**: p >13(24)GeV, |η|<2.5, Iso<0.15

^Th^Th

trigger: $\tau_h(35) \& \tau_h(35)$

Selections:

τ: p >40GeV, |η|<2.1, Tight Tau Iso ID

all channels:

pair opposite-sign

No additional loose e, µ

space separated $\Delta R > 0.5$

tau ID: dynamics strip reconstruction

- > strip size in Run-1: $\Delta \eta \propto \Delta \phi = 0.05 \propto 0.20$
- In Run-2, strip size adjusted dynamically as a function of the pT of e/γ to account for:
 - nuclear interactions of charged pions with the tracker material, which create low pT e/ γ that may go outside the fixed strip
 - conversions of photons from neutral pion decays to electron/positron pairs, and bremsstrahlung
 - boosted tau decay products in the case of high-pT taus

17

Yiwen Wen, DESY

ет, µт channel

- > $Z/\gamma \rightarrow \tau$
 - prediction taken from Monte Carlo (MC) simulation
 - shape correction in p_{T}^{z} with data events
- > Top pair production
 - prediction from MC simulation

> W+Jets

- shapes from MC simulation
- normalization from high mt sideband

> QCD multijet

- fully data-driven
- **shape** from same sign region
- normalized with OS/SS extrapolation factor derive from sideband region

eµ channel

- > $Z/\gamma \rightarrow \tau$
 - prediction taken from Monte Carlo (MC) simulation
 - shape correction in p_{T}^{z} with data events

> Top pair production

- prediction taken from MC simulation
- shape correction in top p_⊤

> W+Jets

prediction from MC simulation

> QCD multijet

- fully data-driven
- shape from same sign region
- normalized with OS/SS extrapolation factor in function of leading lepton p_τ, trailing lepton p_τd and and ΔR(e,µ), derive from sideband region

тт channel

- > Z → t t
 - prediction taken from Monte Carlo (MC) simulation
 - shape correction in p_{T}^{z} with data events
- > Top pair production and W+Jets
 - prediction taken from MC simulation
- > QCD multijet
 - fully data-driven
 - **shape** from OS region with loosened isolation
 - normalization from OS region with loosened isolation (SR excluded), extrapolation factor loose—>tight isolation (measured in equivalent SS regions) applied.

in hMSSM scenario

- > light blue shaded region: observed exclusion
- Dashed line: expected exclusion
- > Grey bands \pm 1,2 σ expected
- no red shaded area in this figure, as m_h = 125 GeV enforced in the hMSSM

