Alignment of the CMS Tracker

Latest Results from LHC Run-II

Gregor Mittag on behalf of the CMS Collaboration

Deutsches Elektronen-Synchrotron (DESY)

22nd International Conference on Computing in High Energy and Nuclear Physics 12 October 2016

Precise tracking is key to CMS physics performance

- What alignment precision is needed?
 - Track-p_T resolution

- Effective position resolution
 - $\sigma_{\mathsf{meas}} \propto \sigma_{\mathsf{hit}} \oplus \sigma_{\mathsf{align}}$
- Intrinsic hit-position resolution
 - $\sigma_{\rm hit} \approx 9 \, \mu {
 m m}$ (pixel)
 - $\sigma_{\rm hit} \approx 20-60 \,\mu{
 m m}$ (strip)

Need to keep $\sigma_{\text{align}} \ll \sigma_{\text{hit}}$

Gregor Mittag (DESY-CMS)

CMS Tracker-Alignment - Run-II Results

- > 1440 silicon pixel modules
 - 3D hit-position measurements
- 15 148 silicon strip modules (24 244 sensors)
 - 2D measurements (r\u00f6 direction)
 - In some layers: additional modules rotated by 100 mrad

Difference between real and assumed geometry affects track measurement

Idea: track-hit residuals r between predicted and measured hit positions as a measure of misalignment

real geometry

Difference between real and assumed geometry affects track measurement

Idea: track-hit residuals r between predicted and measured hit positions as a measure of misalignment

assumed geometry

· Difference between real and assumed geometry affects track measurement

- Idea: track-hit residuals r between predicted and measured hit positions as a measure of misalignment
- Simply moving module by -r means
 - Change of position (alignment) parameters
 - Change of track parameters
 - Change of other residuals
- Tracks correlate alignment parameters
- Need many tracks to determine parameters for all tracker modules

Difference between real and assumed geometry affects track measurement

- Idea: track-hit residuals r between predicted and measured hit positions as a measure of misalignment
- Simply moving module by -r means
 - Change of position (alignment) parameters
 - Change of track parameters
 - Change of other residuals
- Tracks correlate alignment parameters
 - Need many tracks to determine parameters for all tracker modules

Alignment challenge

- Deriving the optimal positions, orientations, and surface deformations that minimize residuals
 - Two independent approaches in CMS complementing each other
 - HipPy (local fit)
 - MillePede-II (global fit)

> Cosmic tracks are split at point of closest approach to the interaction region

- > Differences in track quantities between the two parts indicate misalignment
- Derived updated alignment with 0 T cosmic data prior to 2016 data-taking start-up

> Mean & RMS values show reduced bias of updated alignment wrt. 2015 geometry

- 2015-EOY geometry no longer valid due to temperature and magnetic field changes
- Performance of updated geometry very close to ideal Monte Carlo

- Unbiased track-hit residuals of 1 M collision events @ 3.8 T
- Pixel-detector position known to be very sensitive to condition changes
- Updated alignment produced using 3.8T cosmic-ray and collision data
- EOY-2015 no longer valid for 2016 data, mainly due to temperature and magnetic field changes
- RMS values show improvement over the 2015 geometry by a factor of 5

Primary vertex validation

> Unbiased residuals between tracks and primary vertices are studied

- In the longitudinal and transverse plane
- \blacksquare In bins of η and ϕ
- Cosmic-ray and collision data @ 3.8 T are used for alignment
- > Sample of 1 M events collected through minimum bias triggers @ 3.8 T used for validation
- Systematic z-offset of the pixel half-shells is corrected by the updated alignment

- Since this year, CMS employs an automatic procedure to continuously monitor movements of the high-level structures of the pixel tracker
 - Occur for example due to temperature changes or changes of the magnetic field

- For each run with more than 20 000 events, an alignment of the high-level structures is performed online, measuring the movements relative to the geometry used in data processing
- When appropriate, the geometry is updated with the results of this online alignment

Prompt Calibration Loop

 Run 276318 was taken shortly after a magnet ramp during July 4 2016

- Resulted in movements of the pixel detector structures up to 30 µm wrt. the geometry used in data processing
- Red horizontal lines indicate the thresholds to trigger updates
 - Histogram color changes from green to orange if limit is exceeded

Prompt Calibration Loop

Geometry was updated afterwards

- Much improved performance during run 276327
- Only small residual movements below 2 µm in x and y, and below 10 µm in z direction
- Such plots are routinely produced per run as part of the data-quality monitoring CMS

Evolution of the pixel's high-level-structure movements

- Covers the time from June 21 to July 12 2016, corresponding to 7 fb⁻¹
- Error bars represent the statistical uncertainties
- Grey bands represent runs during which CMS magnet was not at 3.8 T
- Vertical dashed lines illustrate updates of the alignment
- > Typical movements during magnet-cycles are smaller than 50 μ m in x and y, and smaller than 150 μ m in z

- CMS has two independent algorithms in place to solve the highly non-trivial alignment task
- Tracker-alignment updates in 2016 significantly improved the performance at start-up and during data taking
- Geometry changes due to temperature and magnetic-field changes are nicely compensated
- > An automatic online calibration workflow successfully put in place
 - Clear improvement of the prompt reconstruction
- References
 - CMS Tracker Alignment Performance Results Summer 2016, https://twiki.cern.ch/twiki/bin/view/CMSPublic/ TkAlignmentPerformanceICHEP2016
 - Alignment of the CMS tracker with LHC and cosmic ray data, 2014 JINST 9 P06009, doi:10.1088/1748-0221/9/06/P06009
 - Alignment of the CMS silicon tracker during commissioning with cosmic rays, 2010 JINST 5 T03009, doi:10.1088/1748-0221/5/03/T03009

Back-Up

Cosmic track split validation

Distribution of median residuals (DMR) - Pixel

