

Latest results on inclusive $t\bar{t}$ cross sections in CMS

Carmen Diez Pardos (DESY)

9th International Workshop on Top Quark Physics, Sept. 19-23, 2014, Olomouc (Czech Republic)

Introduction

The top quark: key to QCD, EWK, Higgs and new physics

- The most massive known particle
- It decays before hadronisation: study the properties of the bare quark
- Measuring $\sigma_{t\bar{t}}$ is the first fundamental step for understanding top physics
- Test QCD predictions and help constraining the PDFs (especially gluon distribution)
- Determination of m_t or α_s (see J. Kieseler's talk)
- Main background for Higgs and many searches for New Physics
- May provide insight into physics BSM: deviation in the ratio of cross section at 13 TeV/ 8TeV, searches for stop quark production

C. Diez Pardos (DESY)

Top quark production in pp collisions at the LHC

 $t\bar{t}$ production mainly by gluon fusion (~80% at 7-8 TeV)

Top quark decay signatures

In the SM t
ightarrow Wb almost 100%, W decay defines final state

Top Pair Decay Channels

Here: measurements in the three channels (new preliminary result/paper since TOP2015)

C. Diez Pardos (DESY)

Overview of cross section measurements: 7 and 8 \mbox{TeV}

A fine crop of measurements

Overview of cross section measurements: 13 TeV

- L = 42/pb 2.5/fb (2015 data)
- Measurements available in the *e*μ and I+jets channel and fully hadronic
- Precision around 4%!

C. Diez Pardos (DESY)

Dilepton decay channel: $e\mu$

- e/μ : BR~2.5% and small bkg. (ie. DY+jets, tW)
- Measurements at 5, 7, 8 (full data set) and 13 TeV (2015 data) Not shown here: early measurement with 42/pb - Phys. Rev. Lett. 116, 052002 (20)
- Events selected using dilepton triggers (Mu8*Mu17*, Ele8*Ele17*)
- One isolated opposite charge $e\mu$ pair (typically $p_T > 20$ GeV, $e\mu > 20$ GeV)

$e\mu$ 7 and 8 TeV [JHEP 08 (2016) 029]

- Reference signal tī: Madgraph+Pythia6
- One isolated opposite charge $e\mu$ pair
- Jets (p > 30 GeV, $|\eta| <$ 2.5)
- b-tagged jets identified with low mistag rate
- No minimum requirement on jets, b-jets!

$e\mu$ 7 and 8 TeV [JHEP 08 (2016) 029]

- Simultaneous 7 & 8 TeV binned likelihood fit with systematics as nuisance parameters:
 - N b-tagged jet and additional non-tagged Njets categories
 - Fit to the softest non-tagged jet p_T distribution in each category
- Large constraints on JES, extra radiation, b-tagging, etc.
- Main uncertainties: luminosity, trigger and lepton Id. eff, DY
- Uncertainties correlated between 7 and 8 TeV data

Figure: 8TeV post-fit distribution, 2 b-tagged jets category

Results: fiducial cross section

- $\begin{aligned} \sigma_{t\bar{t}}^{\rm vis} \mbox{ defined with events containing an } e\mu \\ \mbox{ pair, with } {\bf p}_{T} > 20 \mbox{ and } |\eta| < 2.4. \end{aligned}$
 - $\sigma^{vis} = 3.03 \pm 0.04 (\text{stat}) \pm_{0.07}^{0.08} (\text{syst}) \pm 0.07 (\text{lumi}) \text{ pb at } \sqrt{s} = 7 \text{ TeV } (3.5\%)$
 - $\sigma^{vis} = 4.23 \pm 0.02 (\text{stat}) \pm \frac{0.11}{0.09} (\text{syst}) \pm 0.11 (\text{lumi}) \text{ pb at } \sqrt{s} = 8 \text{ TeV } (3.6\%)$

Dominant uncertainties: luminosity, trigger and lepton Id. efficiencies, DY

<u></u>	Uncertainty [%]			
Source	7 TeV	8 TeV		
Trigger	1.2	1.2		
Lepton ID/isolation	1.4	1.5		
Lepton energy scale	0.1	0.1		
Jet energy scale	0.7	0.9		
Jet energy resolution	0.1	0.1		
Single top	0.9	0.6		
DY	1.2	1.2		
$t\bar{t}$ other	0.1	0.1		
$t\bar{t} + V$	0.0	0.1		
Diboson	0.2	0.6		
W+jets	0.0	0.0		
QCD	0.0	0.0		
B-tag	0.5	0.5		
Mistag	0.2	0.1		
Pileup	0.3	0.3		
Q^2 scale	0.3	0.3		
ME/PS matching	0.2	0.1		
$MG+PY \rightarrow PH+PY$	0.2	0.4		
Hadronization (JES)	0.6	0.8		
Top p_T	0.3	0.3		
Color reconnection	0.1	0.0		
Underlying event	0.0	0.1		
PDF	0.2	0.7		
Luminosity	2.2	2.6		
Statistical	1.2	0.6		

Full phase space

• $\sigma = 173.6 \pm 2.1 \text{(stat)} \pm \frac{4.5}{4.0} \text{(syst)} \pm 3.8 \text{(lum)}$ pb at $\sqrt{s} = 7$ TeV (3.6%) • $\sigma = 244.9 \pm 1.4 \text{(stat)} \pm \frac{6.3}{5.5} \text{(syst)} \pm 6.4 \text{(lum)}$ pb at $\sqrt{s} = 8$ TeV (3.7%)

• Ratio between 8 and 7 TeV results:

 $R_{t\bar{t}}=1.41\pm0.06$

 \rightarrow Very good agreement with ratio in I+jets channel (next slides)

 $R_{t\bar{t}} =$

$$1.43 \pm 0.04(\text{stat}) \pm 0.07(\text{syst}) \pm 0.05(\text{lumi})$$

• Model uncertainties cannot be constrained: full variation

Sourco	Uncertainty [%]			
source	7 TeV	8 TeV		
Total (vis)	$\pm^{3.6}_{3.4}$	$\pm^{3.7}_{3.4}$		
Q ² scale (extrapol.)	$\mp^{0.0}_{0.4}$	$\pm^{0.2}_{0.1}$		
ME/PS matching (extrapol.)	$\pm^{0.1}_{0.1}$	$\pm^{0.3}_{0.3}$		
Top p_T (extrapol.)	$\pm^{0.5}_{0.3}$	$\pm^{0.6}_{0.3}$		
PDF (extrapol.)	$\pm^{0.2}_{0.1}$	$\pm^{0.2}_{0.1}$		
Total	$\pm^{3.6}_{3.5}$	$\pm^{3.7}_{3.5}$		

13 TeV e μ [CMS-TOP-16-005]

- Counting experiment
- Reference signal $t\bar{t}$: Powheg+Pythia8
- Selection:
 - One isolated opposite charge $e\mu$ pair ($m_{e\mu} > 20 \text{GeV}$)
 - $\bullet \ \geq 2 \ jets$
 - $\bullet \geq 1$ b-tagged jets
- Background estimation
 - $\bullet\,$ tW, ttV and diboson from MC
 - DY MC prediction normalized to Z peak in data
 - Non W/Z: estimated from same-sign control region with scale factor from MC

5.02 TeV: eµ [CMS-PAS-TOP-16-015]

- Potential to constrain high-x gluon PDF
- Similar approach as measurement at 13 TeV
- No b-tagging requirements ۲
- Dominated by statistical uncertainties (25%) ۲

CMS simulation Powheo+Pythia8 (s=5.02 TeV

99 73.4 %

00 1 ale

99 23.9 %

$t\bar{t}+b\bar{b}$: ratio of b- to light-flavour jets [CMS-TOP-16-010]

- Comparison with NLO QCD calculations
- Irreducible bkg. for $t\bar{t}$ +H($b\bar{b}$)
- Measure ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$: large cancellation of uncertainties
 - Selection: dilepton events with ${\geq}4$ jets with $p_{\mathcal{T}}>$ 20 GeV, ${\geq}2$ b-tagged jets
 - Signal extraction by fit to the measured b-tagging algorithm discrimators
 - Corrected to particle level
 - Dominant systematic: b efficiency

				. 🗖				
Phase Space	$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$\sigma_{t\bar{t}jj}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$	10				ار يتعط
Measurement								
Visible	$0.085 \pm 0.012 \pm 0.029$	$3.5\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$	0 1.4				
Full	$3.9\pm0.6\pm1.3$	$176\pm5\pm33$	$0.022 \pm 0.003 \pm 0.006$	ă 🖡		. 1		
Simulation (POWHEG)				30 S				
Visible	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001	5 °°	0.2	0.4	0.6 iot die	0.8 oriminator
Full	3.2 ± 0.4	257 ± 26	0.012 ± 0.001			U	jeruis	Jiiiiiiatoi

ightarrow Also: new results $t\bar{t}t\bar{t}$ (CMS-PAS-TOP-16-016, See L. Beck's talk)

C. Diez Pardos (DESY)

Decay channel: I+jets

- e/μ +jets: BR~30% and manageable bkg. (ie. W+jets)
- Measurements at 7, 8 TeV (full data set) and 13 TeV (2015 data)
- Events selected using single leptons triggers ($p_{\mathrm{T}} > 20-27$ GeV)
- One isolated e or μ (typically lepton $p_{\mathrm{T}} >$ 30 GeV), veto additional leptons
 - C. Diez Pardos (DESY)

l+jets

I+jets 7 and 8 TeV $_{[arXiv:1602.09024]}$

- 1 isolated high-p_T $\mu/{\rm e},$ $\ge \!\! 4$ jets, $\ge \!\! 1$ b-tagged jet
- Fit to M_{Ib}
- Cross check: fit to M3 (three-jet combination with the highest $p_{\rm T})$
- The results from the two lepton+jets channels are combined using the BLUE method.
- QCD background shape from data
- Main syst.: JES, b-tag, Q² & matching scales

Analysis	Generator	Channel	σ at $\sqrt{s}=$ 8 TeV
		$\mu+jets$	$228.9 \pm 3.4 \pm 13.7 \pm 6.0 \; \text{pb}$
$M_{\rm lb}$	MADGRAPH	e+jets	$234.6 \pm 3.9 \pm 15.2 \pm 6.2 \; \text{pb}$
		Combined	$228.5 \pm 3.8 \pm 13.7 \pm 6.0 \; \text{pb}$
$M_{\rm lb}$	POWHEG	Combined	$237.1 \pm 3.9 \pm 14.2 \pm 6.2 \; \text{pb}$
M ₃	MADGRAPH	Combined	$227.1 \pm 2.5 \pm 19.1 \pm 6.0~{ m pb}$
M ₃	POWHEG	Combined	$238.4 \pm 2.8 \pm 20.0 \pm 6.2 \; \text{pb}$
Analysis	Generator	Channel	σ at $\sqrt{s}=$ 7 TeV
		$\mu+jets$	$157.7\pm5.5\pm13.2\pm3.4$ pb
$M_{\rm lb}$	MADGRAPH	e+jets	$165.8 \pm 6.5 \pm 12.8 \pm 3.6~{ m pb}$
		Combined	$161.7 \pm 6.0 \pm 12.0 \pm 3.6 \; \text{pb}$

C. Diez Pardos (DESY)

7 & 8 TeV: fiducial and boosted cross sections

• Measurement at particle level, visible phase space: Exactly one muon or electron with $p_T >32$ GeV and $|\eta| < 2.1$, one neutrino with $p_T >40$ GeV, and at least four jets with $p_T >40$ GeV:

 $\sigma = 3.80 \pm 0.06 (\mathrm{stat}) \pm 0.18 (\mathrm{syst}) \pm 0.10 (\mathrm{lumi})$ pb at $\sqrt{s} = 8$ TeV

Sneak preview: cross sectios in the boosted regime [arXiv:1605.00116]

- Inclusive cross section also measured in the boosted regime $p_T^t > 400 \text{ GeV}$ $\sigma = 1.44 \pm 0.10(\text{stat} + \text{syst}) \pm 0.29(\text{theory}) \pm 0.04(\text{lumi}) \text{ pb}$
- \rightarrow See K. Kousouris' talk

C. Diez Pardos (DESY)

l+jets

I+jets 13 TeV [CMS-PAS-TOP-16-006]

- Require only 1 lepton and at least 1 jet
- Divide the analysis in different categories by counting the jets and b-tags
- Low jet/b-tag categories to constrain backgrounds while high jet/b-tag to fit the signal
- W+jets and QCD estimated from data

l+jets

I+jets 13 TeV [CMS-PAS-TOP-16-006]

- Simultaneous binned likelihood fit with systematics as nuisance parameters (log-normal distributions):
 - Fit to M_{lb} or min(M_{lb})
 - Shape fit in 44 lepton flavour and charge, b-tagged jet, Njets categories
- Data-driven background estimate included in the fit
- Pole quark mass extracted simultaneously in the fit (see J. Kieseler's talk)

I+jets 13 TeV [CMS-PAS-TOP-16-006]

- Statistical uncertainty 0.3%
- Large constraints on JES, extra radiation, b-tagging, etc.
- Main uncertainties: W+jets bkg. modelling, luminosity
- Uncertainty in the extrapolation reduced (1.5%) by requiring only one jet in the selection (\sim 0.7% in the e μ channel at 8 TeV)

Source	Cut-in-Categories	Shape				
Statistics	0.004	0.003				
Experimental uncertainties						
Jet energy scale/resolution	0.003	0.001				
b-tagging	0.004	0.004				
Pileup	0.001	< 0.001				
Lepton efficiency	< 0.001	< 0.001				
Lepton energy scale	0.002	0.001				
W model	0.020	0.020				
QCD multijets	0.018	0.009				
Other backgrounds	0.004	0.004				
Theory uncertainties						
tī model	0.011	0.002				
top $p_{\rm T}$	0.006	0.005				
parton shower scale	0.012	0.001				
QCD scale	0.004	0.002				
Single top quark model	0.008	0.002				
Top quark mass	< 0.001	0.001				
Total	0.034	0.023				

 $\sigma = 834.7 \pm 2.5(stat) \pm 20.7(syst) \pm 22.6(lumi) \pm 12.5(extrapol) | (3.9\%)$

Decay channel: all jets

- BR~46%, very large bkg. (QCD multijet)
- Measurements at 8 TeV (full data set) and 13 TeV (2015 data)
- Multijet trigger event selection
- Signature: \geq 6 jets, \geq 2 b-tagged jets

8 TeV [Eur. Phys. J. C 76 (2016) 128]

- Reconstruction of $t\bar{t}$ system
- Background: mostly QCD multijet
- Unbinned maximum likelihood fit to m_t extract signal and background normalizations

• Uncertainties:

Source	
Background modeling	$\pm 4.9\%$
JES	-7.0, +6.8%
JER	±3.5%
b tagging	±7.3%
Trigger efficiency	-2.2, +2.0%
Underlying event	$\pm 4.4\%$
Matching partons to showers	-4.2, +2.4%
Factorization and renormalization scales	-0.5, +3.8%
Color reconnection	$\pm 1.4\%$
Parton distribution function	$\pm 1.5\%$
Hadronization	$\pm 2.0\%$
Total systematic uncertainty	-13.7, +13.7%
Statistical uncertainty	±2.3%
Integrated luminosity	±2.6%

$\sigma_{t\bar{t}} = 275.6 \pm 6.1(stat) \pm 37.8(syst) \pm 7.2(lum.) \text{ pb} | (13.6\%)$

C. Diez Pardos (DESY)

13 TeV [CMS-PAS-TOP-16-013]

- Performed also in the boosted regime!
- Similar strategy in the resolved regime as at 8 TeV: Unbinned maximum likelihood fit to m_t (χ², m_t range slightly different)
- Dominant uncertainties: JES, b-tagging

Analysis	Resolved	Boosted
Source	(%)	(%)
QCD background modeling	-1.0, +6.6	-2.7, +2.4
Subdominant backgrounds	± 4.0	± 4.0
Jet energy scale	-8.2, +9.0	-1.8, +1.6
Jet energy resolution	-0.7, +0.8	$\pm < 1$
b tagging	-5.5, +6.2	-10.5, +12.9
Trigger efficiency	-2.9, +3.2	-1.1, +0.9
Scale (μ_F and μ_R)	-1.5, +0.0	-1.5, +0.0
PDF	± 1.0	± 1.0
Parton shower	-5.0, +2.5	-7.0, +3.0
NLO generator	± 2.0	± 7.0
Total systematic	-12.4, +14.1	-15.4, +15.8
Statistical	± 3.0	±6.3
Integrated luminosity	± 2.7	±2.7

 $\sigma_{t\bar{t}} = 834 \pm 25(stat)^{+118}_{-104}(syst) \pm 23(lum.)$ pb (13%)

2.53 fb⁻¹ (13 TeV) 900 Events / 5 GeV CMS Data Preliminary 800 Signal IQCD 700 Fit Unc 600 500 400 300 200 100 200 300 400 Reconstructed top mass (GeV) 2.53 fb⁻¹ (13 TeV Events / 0.1 CMS Data 500 Preliminar Signal QČD Fit Unc. 400300 200 100 2.5 ΔR_{bb}

Boosted regime: $\sigma_{t\bar{t}} = 727 \pm 46(stat)^{+115}_{-112}(syst) \pm 8(lum.)$ pb

C. Diez Pardos (DESY)

Summary

From Run I: first ever top quark factory

- Precision regime: $\Delta \sigma_{t\bar{t}} < 4\%$ (full NNLO same precision as data)
- Measurement in the fidual phase space $\Delta\sigma_{t\bar{t}}$ <3%
- Determined ratio of full phase space cross sections

... to (the beginning of) Run II

- Results already in several channels, different regimes
- $\bullet\,$ Measurements with ${\sim}2.3/fb$ reaching similar precision, dominated by luminosity
- Better precision expected with the larger data set: combinining I+jets, dilepton, splitting and fitting the data in further different categories (lepton charge, number of jets, b-jets), etc...

Excellent agreement between channels, \sqrt{s} , and NNLO+NNLL predictions

C. Diez Pardos (DESY)

BACKUP

$t\bar{t}+b\bar{b}$

Top quark pole mass extraction

- Mass dependence of predicted σ allows determining m_t from measured $\sigma(t\bar{t})$
 - m_t^{pole} extracted by comparing the most precise predicted and measured cross sections
 - Final result: combination of 7 and 8 TeV

tt+bb

8 TeV: CMS au_h +lepton [Phys. Lett. B 739 (2014) 23]

Selection:

- 1 isolated high-p_T µ/e, ≥3 jets, ≥1 b-tagged jet
 - 1 τ_h candidate

MET cut

Reconstruction of m_t for additional separation

Main uncertainties:

τ_h Identification	6%
τ_h Mis-Identifcation	4.3%
Factorization Scale	2.9%
Total systematic	9.5%
Total statistical	1%
Luminosity	2.6%

• Dependence on *m_t* described by a linear variation

TOP2016, 19 September 2016

 $\sigma_{t\bar{t}} = 257 \pm 3(stat) \pm 24(syst) \pm 7(lum.)$ pb