

Heavy neutral and charged Higgs boson searches in the MSSM and the 2HDM at ATLAS and CMS

Gerrit Van Onsem (DESY)

QCD@LHC 2016 Zürich, Switzerland 25 August 2016

Observed Higgs boson may be part of extended sector

> Highlight of LHC Run 1: SM-like Higgs boson observed at 125 GeV by ATLAS and CMS

Maybe part of larger Higgs sector?

- > Many models beyond the SM predict **new (pseudo)scalar bosons**
 - Two-Higgs-Doublet models (2HDM)
 - Supersymmetry (MSSM)
 - Models with new electroweak Higgs singlets
 - Models with Higgs triplets
- > 2HDM (and MSSM) predict two SU(2) doublets resulting in 5 physical Higgs bosons
 - Charged H⁺ and H⁻
 - Neutral CP-even H and h
 - Neutral CP-odd A

h often assumed to be observed Higgs boson at 125 GeV \rightarrow leads to stringent constraints on allowed model parameter space

> 2HDM benchmark models

- *type-I* both doublets couple to both up-type and down-type fermions equally
- *type-II* one doublet couples to up-type, other to down-type fermions

14 free parameters but can be reduced by assumptions

- tan(ß) ratio of the VEV of the two SU(2) doublets
 a mixing angle of mixing matrix
 m_h, m_H, m_A, m_{H±} physical masses of Higgs bosons
- > MSSM example of a 2HDM of *type-II*
 - Usually scanning 2D plane of tan(ß) vs mass parameter
- New bosons could couple to fermions (τ, μ, t, b), SM bosons (H, W, Z) and each other
 - \rightarrow rich phenomenology at the LHC!

Charged H[±] H[±] \rightarrow τv , tb H[±] \rightarrow W[±]Z

- $H/A \rightarrow fermions$ $H/A \rightarrow \tau\tau$ $H/A \rightarrow bb$ $H/A \rightarrow tt$
- H \rightarrow ZA, H/A \rightarrow Zh

 $H/A \rightarrow boson pair$ $H \rightarrow hh$ $H \rightarrow ZZ, WW$

Disclaimers:

personal selection of searches, many results not covered in this talk!

Main focus on newer results, with CMS and ATLAS balance

Will not emphasize comparison of results between experiments (note: sometimes requires careful evaluation of signal model assumptions)

Charged H[±] H[±] \rightarrow τ v, tb H[±] \rightarrow W[±]Z

 $H/A \rightarrow fermions$ $H/A \rightarrow \tau\tau$ $H/A \rightarrow bb$ $H/A \rightarrow tt$

 $H \rightarrow ZA, H/A \rightarrow Zh$

 $H/A \rightarrow boson pair$ $H \rightarrow hh$ $H \rightarrow ZZ, WW$

$H^{\pm} \to \tau v \text{, } tb$

> Production/decay dependency on mass hierarchy of H[±] and top

> Discriminating variables: transverse mass m_{τ} of τ_{had} and MET system, btagged jet multiplicity, and H_{τ} (scalar sum of p_{τ} of jets)

$H^{\pm} \to \tau v \text{, } tb$

- > Systematic uncertainties: τ identification, b-tagging, tt modelling, ...
- > 95% CL limits can be derived on cross section (x branching ratios) or in specific MSSM scenarios

$H^{\pm} \to \tau v$

> Production of $H^{\pm} \rightarrow \tau v$ in association with top

1 hadronically decaying $\tau_{had-vis}$ \geq 3 jets with \geq 1 b-tag MET > 150 GeV

> Discriminating variable: m_{T} of $\tau_{had-vis}$ and MET system

Data-driven background estimation for jets and e/µ identified as T by applying fake factors derived from control regions

- > Systematic uncertainties: τ identification, b-tagging, energy scale of jets and τ, ...
- Limits on cross section x branching ratio, and interpretation in MSSM context

HIG-16-027 CMS, 13 TeV

> Coupling in 2HDM only at higher order, in Higgs Triplet models at tree level

3 leptons (muon or electron) 2 jets, $|\Delta \eta_{jj}| > 2.5$, dijet mass > 500 GeV MET > 30 GeV

> Dominating background WZ, followed by non-prompt leptons (latter estimated from data using fake rate method)

$H^{\pm} \rightarrow W^{\pm}Z$

- > Systematic uncertainties: WZ normalization, non-prompt background, jet energy scale, ...
- > Limits on cross section x branching ratio

Charged H[±] H[±] \rightarrow τv , tb H[±] \rightarrow W[±]Z

- $H/A \rightarrow fermions$ $H/A \rightarrow \tau \tau$ $H/A \rightarrow bb$ $H/A \rightarrow tt$
- $H \rightarrow ZA, H/A \rightarrow Zh$ $H/A \rightarrow boson pair$ $H \rightarrow hh$ $H \rightarrow ZZ, WW$

$H/A \to \tau\tau$

- $\tau_{lep}\tau_{had}$ channel: 1 $\tau_{had-vis}$ and 1 lepton $\tau_{had}\tau_{had}$ channel: 2 $\tau_{had-vis}$ - angular and mass cuts for W/Z background removal - event categories according to
- presence of b-tagged jets

> Discriminating variable: transverse mass of di-tau system

$H/A \to \tau\tau$

> Systematic uncertainties: top background normalizations, τ_{had} energy scale and trigger, ...

$H/A \to \tau\tau$

channels: $e\tau_{had}$, $e\tau_{had}$, $\mu\tau_{had}$, τ_{had}

- transverse mass cuts for W background removal

- topological discriminator cut for tt rejection
- event categories according to presence of b-tagged jets

> Discriminating variable: transverse mass of di-tau system

H/A → ττ

> Systematic uncertainties: top background normalizations, τ_{had} misidentification rate, τ trigger, ...

> Narrow spin-0 resonance, can be interpreted as a heavy Higgs boson

≥2 medium b-tagged jets with ≥1 also tight b-tagged 2 jets with highest b-tag output: $p_T > 100$ GeV and $\Delta \eta_{bb} < 1.6$ veto on leptons

- > Discriminating variable: mass m_{bb} of bb system
- > Background prediction from smooth data-derived function

Signal parametrized as convolution of gaussian with exponential

$H/A \to bb$

- > Systematic uncertainties: jet energy resolution, b-tagging (signal) choice of PDF (background), ...
- > Limits on cross section of bb resonance x branching ratio

$H/A \rightarrow tt$

CONF-2016-073 ATLAS, 8 TeV

> If new Higgs boson mass above 2m, threshold, decay to top pair allowed

1 muon or electron \geq 4 jets \geq 1 b-tagged jets

19

Single top

Multijet W+jets

Diboson

b-tag category 1

1000 1200

1400

m_t [GeV]

1600

600

800

Uncertainty Pre-fit background

Z+jets

μ+jets

> Semileptonic top pair system reconstruction via kinematic fit

Interference effects between SM tt and $H/A \rightarrow tt$ create 'peak-dip' structure in m_# distribution 25^{≿1} Data 2012 ATLAS Preliminarv $A \rightarrow t\bar{t}(S+I)$ ×7 m=750 GeV, tanβ=0.7

$H/A \to tt$

- > Systematic uncertainties: jet energy scale and resolution, tt cross section, parton density functions, ...
- > Upper limits on signal strength (non-trivial scaling of resonance and interference parts) vs tanβ

Charged H[±] $H^{\pm} \rightarrow \tau v, tb$ $H^{\pm} \rightarrow W^{\pm}Z$ H/A \rightarrow fermions

 $H/A \rightarrow \tau\tau$ $H/A \rightarrow bb$ $H/A \rightarrow tt$

H \rightarrow ZA, H/A \rightarrow Zh

 $H/A \rightarrow boson pair$ $H \rightarrow hh$ $H \rightarrow ZZ, WW$

$H \rightarrow ZA$

- Mass hierarchy might allow decay of one new Higgs boson to another
- Consider decay of H to Z (decaying to 2 leptons) and A (decaying to 2 b quarks)

2 OSSF leptons ≥ 2 b-tagged jets

Depending on (m_H, m_A) hypothesis, consider rectangular signal region in (m_{IIbb}, m_I) plane and use inverse as control region

- > Systematic uncertainties: jet energy scale, b-tagging, background theory uncertainties, ...
- > Limits on cross section x branching ratio

$\boldsymbol{A} \to \boldsymbol{Z}\boldsymbol{h}$

24

> Assumed decay of pseudoscalar A to Z boson and SM Higgs boson h

> Channels targeted: $Z \rightarrow ee$, $\mu\mu$, $\nu\nu$ and $H \rightarrow bb$

Categories according to #charged leptons (0 or 2) p_{T} of Z candidate (low < 500 GeV, high \geq 500 GeV) #b-tagged jets (1 or 2) Requiring \geq 1 *large-R* jet in high- p_{T} Z categories Requirements of dilepton mass and (di)jet mass: compatibility with Z and h

> Discriminating variable depending on category: (transverse) mass

A → Zh

- > Systematic uncertainties: jet energy scale and resolution, large-R jet mass, b-tagging, ...
- Limits on gluon fusion or b-associated production cross sections x BR, or interpretation in 2HDM parameter space

Charged H[±] H[±] \rightarrow τv , tb H[±] \rightarrow W[±]Z H/A \rightarrow fermions

 $H/A \rightarrow \tau \tau$ $H/A \rightarrow bb$ $H/A \rightarrow tt$

 $H \rightarrow ZA, H/A \rightarrow Zh$

 $H/A \rightarrow boson pair$ $H \rightarrow hh$ $H \rightarrow ZZ, WW$

$\boldsymbol{H} \rightarrow \boldsymbol{h} \boldsymbol{h}$

- > Search for resonant production of two SM-like h bosons
 - "Resolved" regime up to resonance mass 1.1 TeV
 - ≥ 4 b-tagged jets forming 2 dijet systems with small ΔR m_{4jet} dependent p_T requirements on dijets
 - "Boosted" regime above 1.1 TeV
 - 3 or 4 b-tagged jets
 - \geq 2 large-R jets with \geq 2 smaller-R track jets associated to each
- > Discriminating variables: reconstructed resonance mass

- > Systematic uncertainties: b-tagging, multijet background, large-R jetmass scale and resolution, ...
- > Interpretation as new narrow-width Higgs resonance

> Search for heavy scalar boson decaying to $ZZ \rightarrow 2I2v$

2 OSSF leptons (muons or electrons) p_{T} dilepton > 55 GeV MET > 125 GeV

- > Jet multiplicity categories
 - VBF category: \geq 2 jets with large pseudorapidity gap and high mass
 - \ge 1 jets failing VBF
 - 0 jets
- > Discriminating variable: $m_{\rm T}$ of dilepton and MET system

- > Systematic uncertainties: QCD scale in simulation, jet energy scale, background estimation, ...
- > Interpretation in *type-I* and *type-II* 2HDM models

> Relevant channels: qqqq, vvqq, llqq

≥1 large-R jet, p_T > 200 GeV, mass > 50 GeV no leptons, MET > 250 GeV → vvqqno leptons, MET < 250 GeV, additional large-R jet → qqqq 2 (OS)SF leptons in Z window → **l**lqq

Dominant backgrounds: multijet (qqqq) modelled as smoothly falling m_{JJ} spectrum, Z+jets (vvqq and llqq) from control region

$H \rightarrow WW/ZZ$

- > Systematic uncertainties: large-R jet energy/mass scale and resolution, lepton energy scale, theoretical uncertainties of tt and diboson, ...
- > Interpretation as narrow-width scalar singlet

BSM Higgs summary of CMS Run-1

- > (Re)interpretation of 8 CMS Run-1 analyses in 2HDM and MSSM models
- > Choice of fixed parameters motivated from theory + experimental constraints

- > Observed Higgs boson at mass 125 GeV may be part of an extended Higgs sector
- Many BSM models predict new scalar, pseudoscalar and charged or neutral Higgs bosons (2HDM, MSSM, ...)
- > Rich phenomenology, extensive experimental program in ATLAS/CMS Many searches at 7 TeV, 8 TeV and now 13 TeV
- > Many exciting results expected in the near future!

BACKUP

List of BSM Higgs searches at ATLAS and CMS

> References to be added