

Analysis of $Z \rightarrow \tau \tau \rightarrow e + \mu$ in run 2 CMS experiment

Yiwen Wen

DESY

Student session of Terascale school on BSM

Apr. 6th

Contents

eμ

1. introduction

-theoretical motivation: why $Z \rightarrow \tau \tau \rightarrow e + \mu$ matters ?

2. event selections

- -samples
- -selections
- -data/MC corrections

3. background Estimates -refined QCD modeling -top pair modeling

4. results

5. summary

1.Introduction

motivations

- * in LHC run 1, CMS and ATLAS combined searches for SM $H \rightarrow \tau \tau$ results, **5.4 sigma** reached(<u>CMS-PAS-HIG-15-002</u>)
- ★ the Z → $\tau\tau$ as standard candle for commissioning of (SM or BSM) *H* → $\tau\tau$ analysis
- $e + \mu$ make up 6% of $\tau \tau$ decays
- small branching faction counter-balanced by higher lepton reco.
 efficiency and lower fake rate in comparison to the reco. of hadronic τ decay
- * also benefits from absence of large $Z \rightarrow ee \text{ or } Z \rightarrow \mu\mu$ background which dominate $\tau\tau \rightarrow ee$ and $\tau\tau \rightarrow \mu\mu$

1.Introduction

a typical $e + \mu$ event in CMS

Samples

1. data

2.3 fb⁻¹13 TeV collected by CMS in 2015

2. Monte-Carlo simulation

Selections

major backgrounds:

- top pair production modeling in MC simulation
- QCD multi-Jet modeling in data-driven method

dilepton selection:

• trigger

e + μ cross trigger: Muon pt > 17 GeV Electron pt > 12 GeV or Muon pt > 8 GeV Electron pt > 17 GeV

leptons and trigger object matched in cone $\Delta R < 0.3$

data-MC trigger efficiency correction applied

electron and muon

electron $p_{T} > 13(18)$ GeV, muon $p_{T} > 18(10)$ GeV

electron and muon passing identification criteria relative isolation < 0.15

data/MC isolation efficiency correction applied

inclusive selection:

• no extra lepton, $D_{7} > -20 \text{ GeV}$ (definition see next slide)

D ζ discriminant between Z $\rightarrow \tau \tau$ and top pair

- D_ζ built from momenta of
 leptons and missing transverse
 energy
- * for Z → τ τ, decay products
 contained inside a narrow cone
 around the τ trajectory, missing
 transverse energy highly
 correlated with the two leptons
- for top pair, the leptons from a top can have trajectories far from associated neutrinos, missing transverse energy less correlated with the two leptons

$$D_{\zeta} = \hat{\zeta} \cdot \vec{E}_T^{mis} - \alpha \hat{\zeta} \cdot (\vec{p}_{T,e} + \vec{p}_{T,\mu}) = P_{\zeta} - \alpha P_{\zeta vis}$$

data/MC correction: Lepton scale factor

- measure efficiency in data and simulation, for lepton identification criteria and triggers
 - derive a correction to apply on simulation with tag&probe method
- * selection
 - Z(ee) and $Z(\mu\mu)$ events (from data and Drell-Yan simulated sample)
- Fit the dilepton invariant mass distribution
 Exponential bkg, asymmetric gaussian for the signal
- * Efficiency $\varepsilon = \# passing / \# total probes in [80-102]$

Efficiency curves ε (pT) in different eta regions
scale factor~95%

hadronic recoil correction

- avoid mis-modeling of MET in events with no genuine MET
- determination of the recoil effects and obtain correction from $Z \rightarrow \mu\mu$ events
- definition: in Z+Jets, $Z \to \mu\mu$ events: $\vec{U} = \vec{E}_T^{miss} = -\vec{H}_T \vec{p}_{T,\mu\mu}$

- project U on axis
- parallel to the Z pT: U2
 - perpendicular to the Z pT:U1

Recoil correction: fits of U1 and U2

U1 and U2 are studied in dependence of Z pT and jet multiplicity

- Z pT bins : [0,10] , [10,20] , [20,30] , [30,50] , [50,Inf] GeV
- Njets bins : Njets=0 , Njets=1 , Njets ≥ 2
- * $Z \rightarrow \mu \mu$ events from Z peak (70-110 GeV) are used
- backgrounds (dibosons, ttbar, single-top, QCD) are subtracted before fit in data

Resolution functions

Recoil correction: rescaling

- shift mean and rescale resolution
- Define offset w.r.t. mean value in MC:

$$w = U_{1,2} - \left\langle x \right\rangle_{MC}$$

* Rescale resolution and shift w.r.t. mean value in data $U'_{1,2} = \langle x \rangle_{data} + w \frac{\sigma_{data}}{\sigma_{MC}}$

Recoil correction

apply recoil correction on DYJets and WJets samples

200

introducing refined QCD modeling

- reminder: we used ABCD method:obtained the OS/SS ratio in the inverted-lepton isolation control region and then i weight the shape of SS dilepton isolation control region
- refined QCD modeling method introduced
- define control regions:
 - CR1 : (isoµ >0.15 | |isoe >0.15)
 && (isoµ<0.5 && isoe<0.5)
 - CR2 : isoµ≥0.5 | |isoe ≥0.5(for uncertainty estimation)

refined QCD modeling method

- shape from the SS dilepton control region
- * Normalization factor: $N_{QCD} = (N_{data}^{SS} N_{nonQCDMC}^{MC}) \times 2.07$
- * OS/SS ratio as function of leading Pt, trailing Pt and $\Delta R(e,\mu)$ CR1 $\Delta R(e,\mu)$ <2 CR1 2< $\Delta R(e,\mu)$ <4 CR1 $\Delta R(e,\mu)$ >4

flat extrapolation factor vs. refined method

define top pair enriched region

• D_ζ <-60 GeV, MET>80 GeV

Y.Wen

visible mass distribution in control region

top pt reweighting

 in case TTbar is not the signal but a background, this could be improved data/MC agreement in TTbar-enriched control regions or in TTbar-enriched signal region

$$w_{\text{event}} = \sqrt{w_t \cdot w_{\bar{t}}}$$

 $w_{t(\bar{t})} = \exp(a + b \cdot p_{T,t(\bar{t})})$
 $a = 0.156, \quad b = -0.00137 \,[\text{GeV}^{-1}]$

coefficients obtained from run 1 analysis

top pt reweighting

top pt reweighting improve data/MC agreement

top pt reweighting, no cut on D c

top pt reweighting improve data/MC agreement

20

Results

visible mass distribution

- applied topological cuts:
 - missing transverse energy < 80 GeV
 - $D_{\gamma} > -60 \text{ GeV}$
- good agreement between data and MC simulation
- cross-section could be estimated in the 30 90
 GeV mass range
- Systematic include so far:
 - background normalization: (QCD: 20%, VV:20%, W:15%, ttbar:10%, Z(11):10%)
 - Iuminosity:3%

Summaries

- $Z \rightarrow \tau \tau \rightarrow e + \mu$ studies
- implement different kinds of data/MC correction
- refining QCD modeling method shows improvement
- Included top pt reweighting
- shows good data/MC agreement
- uncertainty studies are on-going and ready for crosssection measurement
- stay tuned!

Back up

data/MC correction: Pileup

MC should be reweighted so that the pile up distribution matches with data

uncertainty estimates strategy on QCD modeling

central template: using the CR1 OS/SS ratio

• up template: using the CR2 OS/SS ratio

down template: (CR1)²/CR2