Observation of the $H \rightarrow b\overline{b}$ decay at the CMS experiment

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Terascale Alliance Annual Meeting 26-28 November 2018 Hamburg

Higgs bosons & Yukawa couplings

2

Higgs Yukawa couplings to fermions are special

- unlike any other experimentally probed interaction
- → a main goal of LHC Run-II
- $H \rightarrow bb$ is the dominant decay channel (58%)
 - probes coupling to a down-type quark
 - drives uncertainty of total Higgs boson width
 - important for constraining the BSM coupling
 - difficult to observed due to huge backgrounds
 - has been searched for at the LHC for the last six years
 - .. and earlier at LEP and Tevatron
- Requires heavy use of machine learning techniques

Higgs boson Yukawa couplings					
f	Mass [GeV]	Observed			
τ	1.78	August 2017 🗹			
t	172.44	April 2018 🗹			
b	4.18	?			

[→] highest sensitivity for H→bb

Signature and backgrounds

- Higgs boson produced in association with a vector boson (W or Z)
 - three channels: 0ℓ (Z \rightarrow vv), 1ℓ (W \rightarrow ℓ v), 2ℓ (Z \rightarrow $\ell\ell$)
 - good signature for triggering
 - strong reduction of multijet background
- Prominent backgrounds:

Event selection & categorization

• Four analysis categories:

CMS

- Of $(Z \rightarrow vv)$: $p_T(Z) > 170 \ GeV$
- 1 ℓ (W \rightarrow ℓ v): $p_T(W) > 150 GeV$
- $2\ell (Z \to \ell \ell): p_T(Z) > 150 \ GeV$
- $2\ell (Z \rightarrow \ell \ell): 50 < p_T(Z) < 170 \ GeV$
- Introduce control regions that closely map each signal region
 - inverted selections → enhance purity in the relevant backgrounds
 - validate analysis variables
 - control / constrain the background normalizations in the fit
- Simultaneous fit of signal and control regions

- Main analysis variable: discriminator of a deep neural network (DNN) to distinguish between signal and background, trained separately in each channel
 - input variables: b-jet properties, di-jet kinematics, event topology
 - carefully validated through data/MC comparison

- Additional variables from control regions to exploit different background shapes
 - particularly important for the V+b(b) backgrounds
 - in most cases, use shape of b-tag discriminator or yields
 - 0l and 1l channels: use dedicated DNN multi-categorizer for heavy flavor control region

- **b**-jet energy regression:
 - mainly recovers missing energy in jet due to neutrino in semi-hadronic decays
 - recently switched from BDT to DNN algorithm
 - extended set of input variables (including lepton flavor, jet mass, energy fraction in ΔR rings
 - significant mass resolution improvement without background sculpting (\rightarrow 11.9% in 2017)
- Kinematic fit:
 - no intrinsic missing energy in $Z \rightarrow \ell \ell$ channel
 - apply kinematic fit
 - constrain *ll* system to Z mass
 - balance *ll* + bb system in transverse plane
 - improvement of up to 36% in m_{bb} resolution

DESY.

- Total uncertainty ~34%
- Major sources of systematic uncertainty:
 - BG normalization & modeling, b-tagging, MC sample size

Uncertainty source	$\Delta \mu$	
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

CMS

Entries

10⁶

10⁵

10⁴

 10^{3}

CMS

Supplementary

 Sort DNN distributions into bins of similar S/B ratio and combine

41.3 fb⁻¹ (13 TeV)

Background uncertainty

Signal + Background

Data

Background

VH,H→bb

 $\log_{10}(S/B)$

-0.5

n

- Z production in association with V provides "standard candle"
- Perform VZ analysis with similar technique as VH
 - same DNN inputs but dedicated training
 - larger m(bb) window in signal region \rightarrow fully include Z(bb) peak

CMS

VH(bb) results with 2017 data

- Very good channel compatibility
- Results from 2017 data agree well with SM expectation
 - signal strength: $\mu = 1.08 \pm 0.34$
 - significance: 3.3 σ observed (3.1 σ expected)
 - ~5-10% sensitivity increase compared to 2016

Data set	Expected	Observed	Signal strength
2017			
0-lepton	1.9	1.3	0.73 ± 0.65
1-lepton	1.8	2.6	1.32 ± 0.55
2-lepton	1.9	1.9	1.05 ± 0.59
Combined	3.1	3.3	1.08 ± 0.34

Combine the 2016 + 2017 + the Run 1 analyses

	Significance (σ)	
Data set	Expected	Observed
2017		
0-lepton	1.9	1.3
1-lepton	1.8	2.6
2-lepton	1.9	1.9
Combined	3.1	3.3
Run 2	4.2	4.4
Run 1 + Run 2	4.9	4.8

• Signal strength: $\mu = 1.01 \pm 0.23$

Visualization of excess: m(bb)

- Categorize events with DNN but remove variables correlated with m(jj)
- Fit to m(jj) distribution

CMS

- lower sensitivity than DNN fit, but direct visualization of signal
- Weight with S/(S+B) and subtract background
- Excess compatible with the sum of VZ(bb) and VH(bb) peaks
 - signal strengths compatible with main analysis

Combination of H(bb) results

15

5.5 σ expected

Observation of $H \rightarrow bb$ decay

- Combine VH(bb) results with:
 - ttH(bb)

CMS

- boosted ggH(bb)
- VBF H(bb)
- Measured signal strength:
 - $\mu = 1.04 \pm 0.20$
- Significance:
 - 5.6 σ observed

- CMS achieved 5.6 σ observation of H \rightarrow bb decay
- Signal strength in perfect agreement with SM
- Establishes the dominant decay channel of the Higgs boson
- Confirms the SM picture of Higgs Yukawa couplings at the present level of accuracy
- Completes the set of (currently) accessible couplings to heavy fermions (b, τ, t)
- → Opens a new era of Higgs precision measurements at the LHC