

HL-LHC: Prospects and Future

Matthias Kasemann DESY Germany

12th of November 2018

- The Large Hadron Collider (LHC) has been successfully delivering proton-proton collision data at the unprecedented center of mass energy of 13 TeV.
- An upgrade is planned to increase the instantaneous luminosity delivered by LHC, aiming to deliver a total of about 3000/fb of data per experiment.
- To cope with the expected data-taking conditions ATLAS and CMS are planning major upgrades of the detector.
- Increased physics reach is expected for a wide range of measurements and searches at the HL-LHC for ATLAS and CMS:
 - Higgs coupling
 - di-Higgs boson production sensitivity
 - Vector Boson Scattering prospects
 - Discovery potential for electroweak SUSY and other exotic benchmark scenarios.

Standard Model Production Cross Section Measurements

Status: March 2018

Physics at the High Luminosity LHC

- Precision measurements to be performed:
 - Tests of SM properties of Higgs in terms of couplings to vector bosons & fermions
 - Measure rare decays of Higgs (eg., H->μμ, H->Zγ)
 - Measure self-coupling of Higgs
 - Explore SM dynamics, from flavour physics in B decays at GeV scale to TeV scale scattering of W boson pairs
- In case of a discovery in Run2/Run3:
 - Find the detailed characteristics \rightarrow 300 fb⁻¹ is not enough!
- The High Lumi LHC (HL-LHC) is a discovery machine.

LHC upgrade to High Luminosity

- The accelerator will be upgraded to provide ~3-4 times higher luminosity by 2026
 - Luminosity: Phase I: < 2.2 x 10^{34} cm⁻²s⁻¹ Phase II: (5)7.5 x 10^{34} cm⁻²s⁻¹
 - Planned to deliver 3-4000 fb⁻¹ until 2037

	LHC	HL-LHC
Pileup	~60	~140-200
Dataset	300/fb	3000-4000/fb
Instantaneous Lumi	~2x10 ³⁴	5-7.5x10 ³⁴

Overview: Current View of HL-LHC

Overview of "ultimate luminosity" scenario – 7.5x10³⁴, high availability:

Luminosity profile: ULTIMATE

HL-LHC data taking

- 14 TeV center of mass energy
 6000 primary tracks per event
- Simultaneous events (Pileup) increases from ~60 to 140-200
 - Pileup of 135 reached in test run in October 2018

- Experiments have to upgrade their detectors
 - To achieve similar performance for the new data taking conditions
 - To cope with increased trigger and data rates
 - To improve reconstruction, identification, and rejection of background
- Strategies:
 - Increased use of silicon sensors (radiation tolerant)
 - More granularity in silicon to deal with high pileup
 - Precision timing, resolution of 50 ps to separate collisions (space and time)
 - Faster processing of data in real time for trigger.

ATLAS Detector Upgrades

CMS Detector Summary

HL-LHC as a Higgs factory

- Higgs particles produced in 3000 fb⁻¹ : ~160M
- More than 1M events in each production mechanism spread over observable decay modes
 - ~ 400k H→γγ
 ~ 38k H→µµ
 ~ 20k H→ZZ*→4I
 ~ 17k H→Zγ
 ~ 800 VBF H→TT
- This allows percent level uncertainty for couplings (currently ~20%)
- Rare Higgs decays in reach:
 - $H \rightarrow J/\Psi \gamma$, $H \rightarrow Z \gamma$ SM: $B(H \rightarrow J/\Psi \gamma) = (2.9 \pm 0.2) \times 10^{-6}$

Higgs Couplings at HL-LHC

 Existing studies: comprehensive, largely based on extrapolations of Run-1 results

 $\mu = -$

 σ_{SM}

Expected uncertainty

Higgs self-coupling

- Higgs self-coupling is a key prediction of the Standard Model.
 - Trilinear and quartic vertices are possible for the self-coupling.

Di-Higgs measurements at HL-LHC

- Limits can exclude anomalous couplings down to around a factor of 5 from the SM.
- Further studies with improved results are being performed.

- Observation of the SM di-Higgs production will be challenging.
- Several decay channels were investigated by ATLAS and CMS each with modest sensitivity.

Channel	ATLAS	CMS
bbyy	1.5σ 0.2<λ _{ΗΗΗ} /λ _{SM} <6.9	1.43σ
bbtt	0.6σ -4.0<λннн/λsм<12.0	0.39σ
bbbb	-4.1<\ннн/\\lambdasm<8.7	0.39σ
bbVV	N/A	0.45σ
ttHH, 4b	0.35σ	N/A
Total	1.8σ	1.7σ

HL-LHC: Higgs in di-boson channels

 $VBF H \rightarrow ZZ^* \rightarrow 4I$

- Study conducted for µ=200 (cuts based + BDT classifier)
- A significance of 10.2 ± 0.2 is expected

Independent Pub Note: <u>ATL-PHYS-PUB-2016-008</u> \rightarrow *April 2016* Phase-II Upg. Scoping Document: <u>LHCC-G-166</u> \rightarrow *June 2017*

HL-LHC: Higgs in di-boson channels

 $\mathsf{VBF} \mathsf{H} \to \mathsf{ZZ}^* \to \mathsf{4I}$

ECFA 2016 Summary: <u>CMS PAS FTR-16-002</u> \rightarrow May 2017

- Very clean, low backgrounds, expect huge benefit from high luminosity
 - Projection of 2016 data (12.9 fb⁻¹) to 3000 fb⁻¹

Significant improve in measuring precision will be possible.

HL-LHC: SUSY - prospects

- Currently, exclusion of squarks and gluino masses go up to ~2 TeV
- Limits on gauginos and slepton masses are lower (500 1,000 GeV)
 - More data will extend the reach for these particles significantly
 - $m\chi < 900 \ 1,100 \ \text{GeV}$ with 300 (3,000) fb⁻¹

HL-LHC: SUSY - gluino prospects

CMS-PAS-FTR-13-014

- Large production cross section
- Gluino masses up to 2.2 (1.8) TeV and LSP mass up to 500 (400) GeV can be discovered with 3,000 (300) fb⁻¹

 $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$: Multijet, E_T^{miss}

Conclusion and outlook

- Very rich prospects of physics at the HL-LHC provides the motivation for a significant upgrade programme of the LHC machine and the experiments.
 - To test the Standard Model with precision measurements
 - To open the door to measure rare processes like di-higgs production.
 - To extend the reach of searches for BSM physics
- The experiments are upgrading the detectors using new technology.
 - Delivering better performance despite the harsh environment
 - Detailed studies are being made to estimate the performance.
- Few results of detector performance and physics reach has been presented highlighting the justification of massive investment and efforts for Phase-2 upgrade.