

Searches for Exotic Higgs Bosons at ATLAS and CMS

Alexei Raspereza DESY - Hamburg

53rd Recontres de Moriond – QCD and High Energy Interactions, 17 – 24 March 2018

Introduction

- Recent Higgs studies confirm that Electroweak Symmetry Breaking is realized via Brout-Englert-Higgs mechanism
- What is the structure of the Higgs potential? Two ways to address this question
 - high precision measurement of the discovered Higgs boson
 - search for additional Higgs bosons predicted by theories beyond SM (BSM)
 - Main focus of BSM Higgs searches at LHC : general two Higgs doublet models (2HDM) and minimal supersymmetric standard model (MSSM)
 - no signal found yet \rightarrow limits on model parameters are set 35.9 fb⁻¹ (13 TeV) tanß CMS 95% CL Excluded: ATLAS - Observed + 1σ band Observed ± 1σ Expected $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \cdots \text{Expected}$ $\pm 2\sigma$ band Preliminary ---- Expected $\pm 2\sigma$ Expected tanβ ₀₉ $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^- + l^+ l^- \nu \overline{\nu}$ Excluded hMSSM scenario **2HDM Type II, cos(\beta - \alpha) = -0.1** 95% CL limits 50 10 40 30 20 1 10 200 250 300 350 400 1000 1500 500 2000 *т_н* [GeV] m₄ (GeV)
- This talk → searches for exotic Higgs bosons beyond 2HDM and MSSM

2 Higgs Doublets + 1 Singlet Models

7 physical Higgs states : 2 CP-odd $a_{1,2}$, 3 CP-even $h_{1,2,3}$, 2 charged h^{\pm}

$\begin{array}{l} \underline{\text{example}:\text{next-to-MSSM}}\\ \text{Higgs sector}:\text{2HD+1S type-2}\\ \text{solves }\mu\text{-problem of MSSM}\\ \lambda \hat{S} \hat{H}_u \hat{H}_d \rightarrow \mu_{\text{eff}} = \lambda \langle S \rangle \end{array}$

	Type-1	Type-2	Type-3 (lepton-specific)	Type-4 (flipped)
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Charged leptons	Φ_2	Φ_1	Φ_1	Φ_2
a_1 couplings to fermions				
Up-type quarks	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
Down-type quarks	$-\cot\beta$	tan β	$-\cot\beta$	tan β
Charged leptons	$-\cot\beta$	tan β	tan β	$-\cot \beta$

$$\tan\beta = v_{\Phi_2}/v_{\Phi_1}$$

<u>Particular scenario</u>

 a_1 is very light ($2m_{a1} < m_{H(125)}$) and has large singlet component

- → reduced couplings to fermions
 - hard to detect via conventional production mechanisms

gg→a₁ & bba₁

accessible via H(125) $\rightarrow a_1 a_1 \rightarrow (f_1 \overline{f}_1)(f_2 \overline{f}_2)$

CMS H(125) \rightarrow aa \rightarrow ($\tau\tau$)(bb) Search at 13 TeV

- analyzed di-tau signatures : $au_{
 m e} au_{\mu}, \; au_{
 m e} au_{
 m h}, \; au_{\mu} au_{
 m h}$
- at least one b-tagged jet : $p_{\tau} > 15$ GeV, $|\eta| < 2.4$

in large fraction of signal events second b-jet is too soft

event categorization based on mass of selected τ candidates and b-jet

low $m_{\mathrm{b} au au}^{\mathrm{vis}}$ categories have little background

→ enhanced sensitivity

highest $m_{\mathrm{b} au au}^{\mathrm{vis}}$ category : background control regions

signal is extracted from simultaneous fit to $m_{\tau\tau}^{\rm vis}$ in all channels and all event categories

HIG-17-024

35.9 fb⁻¹ (13 TeV)

Events/bir

Obs./Exp

Interpretations of H(125) \rightarrow aa \rightarrow ($\tau\tau$)(bb) Search

H(125) \rightarrow aa \rightarrow (µµ)($\tau\tau$) Search with CMS at 13 TeV

analyzed final states : $\mu\mu + \tau_e \tau_\mu$, $\mu\mu + \tau_e \tau_h$, $\mu\mu + \tau_\mu \tau_h$, $\mu\mu + \tau_h \tau_h$ HIG-17-029

- probed m_a range : 15 62.5 GeV
 - $m_a \ge 15 \text{ GeV}$: sizable angular separation between leptons in a $\rightarrow \mu\mu$ ($\tau\tau$) decays
 - → selection of isolated leptons
- signal extracted from fit to $m_{\mu\mu}$ of a $\rightarrow \mu\mu$ candidate

ATLAS H(125) \rightarrow aa \rightarrow 4 μ Search at 13 TeV

selection of $(\mu^+\mu^-)(\mu^+\mu^-)$ events :

arXiv:1802.03388

 $\begin{array}{l} 0.88 < m_{12,34} < 20 \ {\rm GeV}, \ \ 120 < m_{4\mu} < 130 \ {\rm GeV} \\ m_{34}/m_{12} > 0.85 \end{array}$

 $m_{12,34}$ – invariant masses of $\mu^+\mu^-$ pairs, $m_{12}>m_{34}$

Phenomenology of Models with $H^{\pm\pm}$

- H^{±±} appear in Higgs triplet models attempting to explain neutrino mass hierarchy
 - type-II see-saw models
- left-right symmetric (LRS) models distinguish between $H_L^{\pm\pm}$ and $H_R^{\pm\pm}$ (couple to ℓ_L and ℓ_R , respectively) $H_L^{\pm\pm}$ and $H_R^{\pm\pm}$ have different couplings to Z boson

$$H^{\pm\pm} \to e^{\pm}e^{\pm}, \, \mu^{\pm}\mu^{\pm}, \, e^{\pm}\mu^{\pm}$$

ATLAS Search for H^{±±} at 13 TeV

 Analysis searches for H^{±±} in multi-lepton final states from H⁺⁺H⁻⁻ production

arXiv:1710.09748

- Events classified in various categories based on
 - lepton multiplicity and lepton flavor composition
 - Signal is extracted from simultaneous fit to mass variables in all categories
 - 2-lepton and 3-lepton regions : mass of the same sign lepton pair

4-lepton region : average mass of two same-sign lepton pairs

Interpretations of H^{±±} Search

- no signal is observed in H^{±±} search
- limit on BR($H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$) and $\sigma(pp \rightarrow H^{++}H^{--})$ are set under various model assumptions
- few representative examples are given here

Summary

- Various searches are performed by ATLAS and CMS for exotic Higgs bosons beyond 2HDM and MSSM
 - generic 2HD+1S models
 - models with *H*^{±±}
- Searches reveal no signal so far
- Constrains are set on model parameters
- Collaborations are extending scope and enhancing sensitivity of these searches by
 - considering more experimental signatures
 - improving experimental techniques

Summary of Run1 H(125) \rightarrow aa Searches at CMS

most of CMS H(125) \rightarrow aa searches at CMS are performed inclusively

$\mathrm{H}(125) \rightarrow \mathrm{aa} \rightarrow (\mu^+\mu^-)(\mu^+\mu^-)$

- clean signature : two boosted µ+µ-pairs
- low background : mainly QCD multijets with muons from quarkonia and b/c-hadron decays (estimated from data)
- signal : resonant peak in 2D mass distribution of boosted muon pairs

 $\mathrm{H}(125) \to \mathrm{a}_{1}\mathrm{a}_{1} \to (\tau_{\mu}^{\pm}\tau_{1\text{-prong}}^{\mp})(\tau_{\mu}^{\pm}\tau_{1\text{-prong}}^{\mp})$

- signature : two same sign muons each accompanied by single track
- major background : QCD multijet (measured in data)
- signal extracted from 2D mass distribution of muon-track pairs

 $H(125) \to a_1 a_1 \to (\tau_\mu \tau_X)(\tau_\mu \tau_X)$

- sensitivity is enhanced by exploiting
 VH production mode in addition to gg → H
- boosted τ pairs : τ_{χ} identification after removal of selected τ_{μ}
- event categorization based on m_T of triggering muon and missing E_T
- counting experiment after mass cuts with $m_{\mu+x} > 4$ GeV

Summary of Run1 H(125) \rightarrow aa Searches at CMS

$H(125) \rightarrow aa \rightarrow (\mu^+\mu^-)(b\bar{b})$

- cut on invariant mass of selected objects : $|m_{bb\mu\mu} 125 \text{ GeV}| < 25 \text{ GeV}$
- largest backgrounds : low mass Drell-Yan and top-pair events
- signal extracted from analytical fit of $m_{\mu\mu}$ spectrum

 $H(125) \rightarrow aa \rightarrow (\mu\mu)(\tau\tau)$

- exploited di-tau signatures $\tau_e \tau_e, \ \tau_e \tau_\mu, \ \tau_e \tau_h, \ \tau_\mu \tau_h, \ \tau_h \tau_h$
- largest backgrounds : irreducible ZZ and WZ, WW and QCD with jet $\rightarrow \tau$ fakes
- * signal is extracted from analytical fit of $m_{_{\mu\mu}}$ spectrum

Both analyses are insensitive yet to NMSSM scenarios

Summary of Run1 H(125) → aa Searches at CMS

$H(125) \rightarrow aa \rightarrow (\mu^+\mu^-)(b\bar{b})$

- cut on invariant mass of selected objects : $|m_{_{bb\mu\mu}} 125 \text{ GeV}| < 25 \text{ GeV}$
- largest backgrounds : low mass Drell-Yan and top-pair events
- Signal extracted from analytical fit of m_{µµ} spectrum

 $H(125) \rightarrow aa \rightarrow (\mu\mu)(\tau\tau)$

- $\begin{array}{c} \bullet \quad \mbox{Exploited di-tau signatures} \\ \tau_e \tau_e, \ \tau_e \tau_\mu, \ \tau_e \tau_h, \ \tau_\mu \tau_h, \ \tau_h \tau_h, \end{array}$
- Largest backgrounds : irreducible ZZ and WZ, WW and QCD with jet $\rightarrow \tau$ fakes
- Signal is extracted from analytical fit of $m_{_{\mu\mu}}$ spectrum

 Both analyses are insensitive yet to NMSSM scenarios but provide constrains on alternative 2HD+1S models

Signal extraction in H(125) \rightarrow aa \rightarrow (µµ)($\tau\tau$) Search

Signal extracted from fit to mass spectrum of reconstructed a $\rightarrow \mu\mu$ candidate

background shape modeling : Bernstein polynomials

reducible (ZZ $\rightarrow 2\ell$ +2q, ttbar, QCD) : from sideband with SS, loosely isolated τ candidates

signal shape modeling

H(125) → aa → ($\mu\mu$)($\tau\tau$) component Voigtian = Gaussian \otimes Lorentz profile

H(125) → aa → $(\tau_{\mu}\tau_{\mu})(\tau\tau)$ component Gaussian + polynomial

H(125) → aa → (μμ)(ττ) Search with ATLAS at 8 TeV

search extends in m_a down to $a \rightarrow \tau \tau$ decay threshold ($m_a \sim 3.75$ GeV)

Phys. Rev. D92 (2015) 052002

- $\mu^+\mu^-$ pairs with invariant mass in the range 2.8 70 GeV are selected
- one τ is identified via leptonic decay $\tau \to \ell \nu_{\ell} \nu_{\tau}, \ \ell = e, \mu \ (\tau_{\ell})$
- for low m_a a boson is Lorentz boosted & its decay products are collimated \rightarrow

 τ_ℓ candidate is accompanied by 1, 2 or 3 nearby tracks with leading track having opposite sign w.r.t. $\tau_\ell\,$ candidate

- two signal regions are defined by flavor of lepton from tau decay : SRµ & SRe
- signal is extracted from simultaneous fit of $m_{\mu\mu}$ spectrum of a $\rightarrow \mu\mu$ candidate in two signal regions

ATLAS H(125) \rightarrow aa \rightarrow (µµ)($\tau\tau$) Search Results

Results of the search are used to set limit on

