
Simultaneous alignment and Lorentz angle calibration in the 
CMS silicon tracker using Millepede II

Forward PIX Barrel PIX Forward PIX• Highest resolution.
• Closest to the interaction point.
• Largest irradiation dose.
• Sensor properties can change 

during detector operation.
• Resolution most sensitive to 

misalignment and miscalibration.

Pixel detector

x

x

x

By = 3.8T

real track

fitted trajectory

predicted hit

measured hit

residual

Track-hit residuals

• Innermost detector
• Measures trajectories 

of charged particles
• Used in practically all 

physics analyses
• Estimation of pT, 

impact parameter
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Silicon tracker

Superconducting 
solenoid
• Magnetic field: 3.8T
• Bends trajectories 

of charged particles 

Length: 28.7 m
Diameter: 15 m
Weight: 14 000 T

CMS detector
One of the 2 multipurpose 
detectors at LHC.

• Track induces signal charge 
drifting under E field.

• Global hit position directly 
depends on global module 
position, orientation, curvature.

• Center of collected charge cluster 
treated as measured hit position.
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BPIX module: B = 0T BPIX module: B = 3.8T

• If B≠0, Lorentz force deflects 
the signal charge by angle θLA.

• Increases cluster size, shifts the 
hit position by ∆x.

• Lorentz angle parameterized in 
terms of mobility.

• Mobility depends on:
• accumulated irradiation dose
• temperature of the module
• bias voltage, ...

• Tracks measured in different 
magnetic fields are used to 
disentangle alignment and 
Lorentz angle effect.
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d = 285 µm
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Alignment procedure
• Similar to the official baseline alignment, extended to full 2012 data (65 million tracks):

• Alignment of module positions and orientations, accounting for movements (31 time 
intervals) of the large structures.

↳ ~92 000 parameters
+  Lorentz angle in BPIX (1 560 parameters):
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(~330 pb-1 each)

×    65 time intervals

•  To disentangle module alignment and Lorentz angle calibration.
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– measured position of the hit;
– predicted position of the hit;
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– track parameters;
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• Misalignment and miscalibration of the detector increase track-hit residuals.

• Based on minimization of normalized track-hit residuals using function:

Track-based alignment with Millepede II

Up to 9 alignment parameters per sensorUp to 9 alignment parameters per sensorUp to 9 alignment parameters per sensor
x    y    z Shift along axis
α    β    γ Tilt around axis

w0  w1  w2 Surface distortion）
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Calibration parameters  [NEW]
Lorentz angle

More than 200 000 parameters (p) can be determined simultaneously:

If not properly determined, affects the 
alignment parameters.

Conclusions
• Lorentz angle measured in BPIX for full 2012 data with high precision to see local 

variations and time dependence (using Millepede II and additional 0T data).
• Combined approach (simultaneous module alignment and Lorentz angle calibration) 

improves overall precision of hit reconstruction ⟹ tracking, vertexing, b-tagging. 
• Allows consistent use of 3.8T and 0T data in alignment.
• Will be in even higher demand after LS1, with more rapid Lorentz angle development.
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∆x = ∆t·d/2
∆x = 0.03·285/2
∆x = 4 µm
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• Consistent development in all rings of the BPIX.
• Clear offset between negative (Z<0) and 

positive (Z>0) parts (different bias voltage?).
• Variation of Lorentz angle equivalent to 

shift of the module by up to 4 µm.
• Different shape of evolution among layers.
• Can be the same behaviour delayed in distant 

layers (lower accumulated irradiation dose).
• Lorentz angle expected to change faster 

after LS1 due to increased irradiation dose.

m]µ)[hit-x'
pred

median(x'
-10 -8 -6 -4 -2 0 2 4 6 8 10

#m
od
ul
es

0
20
40
60
80
100
120

140
160
180

         Millepede II
Alignment
Alignment +

   LA calibration

CMS Preliminary 2012
BPIX Layer 3

Isolated muon tracks
-1 after 19 fb-1L = 0.69 fb

Lorentz angle time dependence

• Analyzed residuals of 2 million high pT tracks.
• Median of the residuals calculated for each module (1 entry per module).
• Narrower peak clearly seen with simultaneous alignment and Lorentz angle calibration.

Validation of the result

fij  linearization, matrix size reduction
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