

Till Arndt (DESY) for the CMS Collaboration

CMS-PAS-TOP-13-011

http://cds.cern.ch/record/1644573

- First measurement of top pair + photon process at 8 TeV
- Towards direct measurement of top quark couplings
 - new standard model tests
 - interesting for new physics searches
- Analysis outline
 - µ+jets channel of top quark pair decay
 - main background from mis-identification of jets as photons
 - dataset: 19.7 fb⁻¹ @ 8 TeV

<mark>signal region:</mark> (incl.γ from W, b, ISR)
$pp \rightarrow (W^+b) (W^-\bar{b}) \gamma$
$E_{\rm T}(\gamma) > 20 { m GeV}$
$\Delta R(\gamma, b) > 0.1$
$\sigma_{t\bar{t}+\gamma}^{\rm NLO} = 1.8 \pm 0.5 \mathrm{pb}$

- Preselection (tt)
 - I isolated muon
 - 4 jets (at least one jet b-tagged)
 - veto electrons
- $\sigma_{t\bar{t}+\gamma} = R \sigma_{t\bar{t}}^{CMS}$

- Selection $(+ \gamma)$
 - p_T > 25 GeV and |η| < I.4 (CMS ECAL barrel)
 relative isolations of photon
- Template fit to estimate yield of real photons
 - isolation-distribution of charged hadron candidates
 - real photon template taken from MC
 - fake photon template from data sideband
 - dominating sys uncert.: shape of fake photon distr.

 $R = (1.07 \pm 0.07(\text{stat.}) \pm 0.27(\text{syst.})) \cdot 10^{-2}$ $\sigma_{t\bar{t}+\gamma} = 2.4 \pm 0.2(\text{stat.}) \pm 0.6(\text{syst.}) \text{ pb}$

 $pp \to t\bar{t}\gamma \to (bl\nu_l)(bjj)\gamma$ $pp \to t\bar{t} \to (bl\nu_l)(bjj\gamma)$

 $pp \to t\bar{t} \to (bl\nu_l\gamma)(bjj)$

- Future developments on signal definition
 factorization of production and decay
 no contamination of non-tt decays
- Future developments on template fit
 - completely data-driven
 - using randomized cone directions
- Combination of decay channels

Manual	t	b W^+ μ^+
addition		\overline{b}