

Measurement of the differential cross section for top-quark-pair production in the dilepton channel at $\sqrt{s} = 13$ TeV with the CMS detector

Mykola Savitskyi (DESY) on behalf of the CMS collaboration

Introduction

- **Motivation**: probe top-quark-pair production at $\sqrt{s} = 13$ TeV and compare results with predictions from perturbative QCD calculations
- Measurements of top-quark and tt-system kinematics in the full phase space, and of the jet multiplicity in a fiducial phase space
- Data recorded by the CMS experiment in 2015 corresponding to $L_{int} = 2.2 \text{ fb}^{-1}$

6 Results

- Normalized differential tt production cross sections confronted with MC predictions and state-of-the-art standard model QCD predictions to beyond-NLO accuracy
- Overall uncertainty ranges from 3 30% with largest contributions from theory related sources or statistical component depending on the bin

Parton level, full phase space

Compared to MC

2 Event selection

Signal: only tt events with two leptons that do not originate from decays of tau leptons; simulated with <u>Powheg v2+Pythia8</u>

Event selection criteria:

- exactly two isolated **leptons** with opposite charge: $p_{_{\rm T}}$ > 20 GeV, $|\eta|$ < 2.4
- at least two **jets**: $p_{T} > 30$ GeV, $|\eta| < 2.4$
- m(ll) > 20 GeV
- at least one identified **b** jet (b-tag)

Additionally for ee and µµ channels:

- $E_{T}^{miss} > 40 \text{ GeV}$
- Z mass veto: |m(Z) m(ll)| > 15 GeV

3 Kinematic reconstruction

Two undetectable neutrinos after top decay: kinematic reconstruction needed

- Kinematics of top quarks are determined by solving system of equations with respect to neutrino momenta (six unknowns) using inputs: 2 jets, 2 leptons, E_{τ}^{miss}
- Constraints: $E_{T}^{miss} = p_{T}(v) + p_{T}(v)$, m(W) = 80.4 GeV, m(t) = m(t) = 172.5 GeV
- Examination of all possible lepton-jet pairs with assigned weight accordingly to expected true m(l,b) spectrum
- Each event reconstructed 100 attempts with smearing energies and directions of lepton and b jet candidates by their resolutions
- Top quarks constructed as weighted average of solutions for all smeared attempts

Particle level, fiducial phase space

4 Differential cross section

For a given variable *X*, normalized differential cross section is determined as:

 $\frac{1}{\sigma} \frac{d \sigma_i}{dX_i} = \frac{1}{\sigma} \frac{X_i}{\Delta_i^X}$

- *x*_i respresents number of signal events observed in data after background subtraction and corrected for detector efficiencies, acceptances, and migrations
- Δ_{i}^{X} bin width in units of *X*; σ measured total cross section in visible phase space
- <u>Regularized SVD unfolding</u> using response matrix as calculated from tt signal sample simulated with Powheg v2+Pythia8

6 Summary

- Normalized differential tt production cross sections were measured at 13 TeV in pp collisions using data corresponding to 2.2 fb⁻¹ collected by CMS detector in 2015
- Measurements done in bins of $p_{T}(t)$, y(t), $p_{T}(tt)$, m(tt), y(tt) and jet multiplicity:
- \rightarrow generally, data are in agreement with modern standard model QCD predictions for all measured distributions
- \rightarrow higher jet multiplicities in data are not uniformly described by any of considered Monte Carlo predictions
- \rightarrow top quark p_T spectrum in data is found to be softer than Monte Carlo predictions and is better described by beyond the NLO-accuracy QCD calculations

Reference: CMS PAS TOP-16-011 e-mail to: mykola.savitskyi@desy.de