Search for additional neutral MSSM Higgs bosons in the **TT** final state in CMS

Andrea Cardini (DESY, Hamburg) on behalf of the CMS collaboration

More neutral Higgs bosons?

The Minimal Supersymmetric extension to the Standard Model (MSSM) predicts the existence of five physical Higgs bosons: 2 charged Higgs H^{\pm} , 3 neutral Higgs Φ : two scalars h, H and a pseudo scalar A.

Two parameters are used to describe the model:

- Mass of pseudo scalar Higgs boson m_A .
- The ratio of the vacuum expectation values of the two Higgs doublets tan β .

Final states for di-t system

0.5

4 di-τ final states with largest branching ratios studied in this analysis:

 $\tau_h \tau_h$, $e \tau_h$, $\mu \tau_h$, $e \mu$

The 2 remaining final states ($ee, \mu\mu$) are not studied, because of the huge background from DY process

Hadronic taus are reconstructed using hadron (combinations of track from π^{\pm}) + strip (e/y candidate clusters from π^{0}) algorithm[1].

3 reconstructed decay modes: 1 prong, 1 prong+ $\pi^{0}(s)$, 3 prongs

Event selection and categorization

Fake taus background

One of the main backgrounds comes from the fake taus: jets misidentified as hadronic taus.

Background estimated through the fake Factor Method:

- **Determination Regions** (DR) are used to estimate the ratio between fake taus and genuine taus
- This ratios are applied to simulated events in an Application Region (AR) to estimate the background in the **Signal Region** (SR)

$\mathbf{H} \to \tau \tau \to \mathbf{e} \mu$	Low- D_{ζ}	Medium- D_{ζ}	$\mathrm{High}\text{-}D_\zeta$	Low- D_{ζ}	Medium	$\operatorname{m-}D_{\zeta}$ High- D_{ζ}	Two categories per		$\Delta \mathbf{R}$		
$H \to \tau \tau \to e \tau_h$	Loose- $m_{\rm T}$	$n_{ m T}$ Tight- $m_{ m T}$		Loose- $m_{\rm T}$		Tight- $m_{\rm T}$	• No b-tagged jet				
$\mathrm{H} \to \tau \tau \to \mu \tau_\mathrm{h}$	$ \rightarrow \tau \tau \rightarrow \mu \tau_{\rm h}$ Loose- $m_{\rm T}$ Tight- $m_{\rm T}$		- <i>m</i> _T	Loose- $m_{\rm T}$		Tight- $m_{ m T}$	category targeting				
$H \to \tau \tau \to \tau_h \tau_h$						$gg\Phi$ • With b-tagged jet					
$\mathrm{Z} ightarrow \mu \mu$							category targeting		$ F_{\rm F}^{\rm QCD} $		
$t \bar{t}(e \mu)$	$(e\mu)$								$\mathrm{DR}_{\mathrm{QCD}}$		
	Signal region (SR)										
		Control	region								

Signal extraction and results

Improved model constraints and limits on the cross section

Fit on all categories using total transverse mass variable as final discriminant to extract signal:

 $m_T^{tot} = \sqrt{m_T^2(p_T^{\tau_1}, p_T^{mis}) + m_T^2(p_T^{\tau_2}, p_T^{mis}) + m_T^2(p_T^{\tau_1}, p_T^{\tau_2})}$ where: $m_T(l_1, l_2) = \sqrt{2 p_T^1 p_T^2 (1 - \cos \theta_{1,2})}$

CMS-HIG-17-020

Model independent limit on cross-section times branching ratio between 90 and 3200 GeV

References

1. Performance of reconstruction and identification of τ leptons in their decays to hadrons and v_{τ} in the CMS detector at LHC with the 2016 data, CMS-PAS-TAU-16-003 2. Search for additional neutral MSSM Higgs bosons in the di-tau final state in pp collisions at sqrt(s) = 13 TeV, CMS-HIG-17-020

